Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
Bioprocess Biosyst Eng. 2024 Nov;47(11):1803-1814. doi: 10.1007/s00449-024-03070-9. Epub 2024 Jul 30.
Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
碳氮元素在真菌生物膜形态和代谢产物的产生中起着至关重要的作用。然而,营养物质的调控机制仍有待深入理解。本研究比较了在两种不同碳氮源(GY:葡萄糖作为碳源和酵母提取物作为氮源,MT:甘露醇作为碳源和胰蛋白胨作为氮源)的培养基中,球孢白僵菌生物膜的形成和(R)-2-(4-羟基苯氧基)丙酸的产生。在 MT 培养基中,R-HPPA 的产量比在 GY 培养基中增加了 2.85 倍。在 GY 和 MT 培养基中发现了不同的真菌生物膜形态和结构。比较转录组学揭示了丝裂原活化蛋白激酶(MAPK)途径和多糖降解基因的上调,这些基因影响 MT 培养基生物膜中菌丝体形态和胞外聚合物(EPS)中多糖的产量。与 NADH 合成(碳代谢、氨基酸代谢、谷氨酸循环)相关的基因上调导致 NADH 积累,并引发 R-HPPA 产量的增加。这些数据为未来研究调控真菌生物膜形态和提高高价值化合物的生产提供了有价值的基础。