Suppr超能文献

耐盐酵母菌株在基于海水的生长培养基中形成生物膜的形成和特性。

Formation and characterization of biofilms formed by salt-tolerant yeast strains in seawater-based growth medium.

机构信息

Department of Medicine (Infectious Disease Division), School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.

Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Appl Microbiol Biotechnol. 2021 Mar;105(6):2411-2426. doi: 10.1007/s00253-021-11132-1. Epub 2021 Feb 25.

Abstract

Yeast whole cells have been widely used in modern biotechnology as biocatalysts to generate numerous compounds of industrial, chemical, and pharmaceutical importance. Since many of the biocatalysis-utilizing manufactures have become more concerned about environmental issues, seawater is now considered a sustainable alternative to freshwater for biocatalytic processes. This approach plausibly commenced new research initiatives into exploration of salt-tolerant yeast strains. Recently, there has also been a growing interest in possible applications of microbial biofilms in the field of biocatalysis. In these complex communities, cells demonstrate higher resistance to adverse environmental conditions due to their embedment in an extracellular matrix, in which physical, chemical, and physiological gradients exist. Considering these two topics, seawater and biofilms, in this work, we characterized biofilm formation in seawater-based growth media by several salt-tolerant yeast strains with previously demonstrated biocatalytic capacities. The tested strains formed both air-liquid-like biofilms and biofilms on silicone surfaces, with Debaryomyces fabryi, Schwanniomyces etchellsii, Schwanniomyces polymorphus, and Kluyveromyces marxianus showing the highest biofilm formation. The extracted biofilm extracellular matrices mostly consisted of carbohydrates and proteins. The latter group was primarily represented by enzymes involved in metabolic processes, particularly the biosynthetic ones, and in the response to stimuli. Specific features were also found in the carbohydrate composition of the extracellular matrix, which were dependent both on the yeast isolate and the nature of formed biofilms. Overall, our findings presented herein provide a unique data resource for further development and optimization of biocatalytic processes and applications employing seawater and halotolerant yeast biofilms.Key points• Ability for biofilm formation of some yeast-halotolerant strains in seawater medium• ECM composition dependent on strain and biofilm-forming surface• Metabolic enzymes in the ECM with potential applications for biocatalysis.

摘要

酵母细胞已被广泛应用于现代生物技术中,作为生物催化剂来生成许多具有工业、化学和制药重要性的化合物。由于许多利用生物催化的制造企业越来越关注环境问题,因此海水现在被认为是生物催化过程中替代淡水的可持续选择。这种方法很可能引发了对耐盐酵母菌株的新研究计划。最近,微生物生物膜在生物催化领域的潜在应用也引起了越来越多的关注。在这些复杂的群落中,由于细胞嵌入在存在物理、化学和生理梯度的细胞外基质中,因此对不利环境条件表现出更高的抵抗力。考虑到这两个主题,海水和生物膜,在这项工作中,我们通过具有先前证明的生物催化能力的几种耐盐酵母菌株来表征海水基生长培养基中的生物膜形成。测试的菌株在空气-液体样生物膜和硅树脂表面上形成生物膜,Debaryomyces fabryi、Schwanniomyces etchellsii、Schwanniomyces polymorphus 和 Kluyveromyces marxianus 表现出最高的生物膜形成能力。提取的生物膜细胞外基质主要由碳水化合物和蛋白质组成。后者主要由参与代谢过程的酶组成,特别是生物合成酶,以及对刺激的反应。在细胞外基质的碳水化合物组成中也发现了一些特定的特征,这些特征既取决于酵母分离株,也取决于形成的生物膜的性质。总的来说,我们在此提出的研究结果为进一步开发和优化利用海水和耐盐酵母生物膜的生物催化过程和应用提供了独特的数据资源。

相似文献

1
Formation and characterization of biofilms formed by salt-tolerant yeast strains in seawater-based growth medium.
Appl Microbiol Biotechnol. 2021 Mar;105(6):2411-2426. doi: 10.1007/s00253-021-11132-1. Epub 2021 Feb 25.
3
Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts.
Appl Microbiol Biotechnol. 2023 Jul;107(14):4409-4427. doi: 10.1007/s00253-023-12589-y. Epub 2023 May 26.
4
Recent developments in the biology and biotechnological applications of halotolerant yeasts.
World J Microbiol Biotechnol. 2022 Jan 6;38(2):27. doi: 10.1007/s11274-021-03213-0.
6
Biotransformation using halotolerant yeast in seawater: a sustainable strategy to produce R-(-)-phenylacetylcarbinol.
Appl Microbiol Biotechnol. 2018 Jun;102(11):4717-4727. doi: 10.1007/s00253-018-8945-1. Epub 2018 Apr 7.
8
Biocatalysis in seawater: Investigating a halotolerant ω-transaminase capable of converting furfural in a seawater reaction medium.
Eng Life Sci. 2019 Aug 23;19(10):721-725. doi: 10.1002/elsc.201900053. eCollection 2019 Oct.
9
The color of Brevibacterium linens depends on the yeast used for cheese deacidification.
J Dairy Sci. 2004 May;87(5):1536-44. doi: 10.3168/jds.S0022-0302(04)73305-6.

引用本文的文献

1
Yeast Diversity on Sandy Lake Beaches Used for Recreation in Olsztyn, Poland.
Pathogens. 2025 Jul 29;14(8):744. doi: 10.3390/pathogens14080744.
3
Biotechnological applications of biofilms formed by osmotolerant and halotolerant yeasts.
Appl Microbiol Biotechnol. 2023 Jul;107(14):4409-4427. doi: 10.1007/s00253-023-12589-y. Epub 2023 May 26.
4
Schwanniomyces etchellsii, acid-thermotolerant yeasts from urban city soil.
World J Microbiol Biotechnol. 2023 Apr 17;39(6):159. doi: 10.1007/s11274-023-03602-7.
5
Recent developments in the biology and biotechnological applications of halotolerant yeasts.
World J Microbiol Biotechnol. 2022 Jan 6;38(2):27. doi: 10.1007/s11274-021-03213-0.
6
Spatially structured yeast communities: Understanding structure formation and regulation with omics tools.
Comput Struct Biotechnol J. 2021 Oct 9;19:5613-5621. doi: 10.1016/j.csbj.2021.10.012. eCollection 2021.

本文引用的文献

2
Molecular mechanism of biofilm disruption by fungal and bacterial glycoside hydrolases.
J Biol Chem. 2019 Jul 12;294(28):10760-10772. doi: 10.1074/jbc.RA119.008511. Epub 2019 Jun 5.
3
Candida albicans biofilm growth and dispersal: contributions to pathogenesis.
Curr Opin Microbiol. 2019 Dec;52:1-6. doi: 10.1016/j.mib.2019.04.001. Epub 2019 May 11.
4
Biofilm systems as tools in biotechnological production.
Appl Microbiol Biotechnol. 2019 Jul;103(13):5095-5103. doi: 10.1007/s00253-019-09869-x. Epub 2019 May 11.
5
Virulence Factors Produced by Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity.
Mol Cell Proteomics. 2019 Jun;18(6):1036-1053. doi: 10.1074/mcp.RA118.001120. Epub 2019 Mar 8.
6
Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review.
Front Microbiol. 2019 Feb 21;10:191. doi: 10.3389/fmicb.2019.00191. eCollection 2019.
7
Conserved Role for Biofilm Matrix Polysaccharides in Drug Resistance.
mSphere. 2019 Jan 2;4(1):e00680-18. doi: 10.1128/mSphereDirect.00680-18.
8
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
9
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
10
Fungal biofilms: From bench to bedside.
Rev Esp Quimioter. 2018 Sep;31 Suppl 1(Suppl 1):35-38.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验