Suppr超能文献

READRetro:基于检索增强的双视图回溯合成预测天然产物生物合成。

READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis.

机构信息

Department of Biological Sciences, KAIST, Daejeon, 34141, Korea.

Kim Jaechul Graduate School of AI, KAIST, Daejeon, 34141, Korea.

出版信息

New Phytol. 2024 Sep;243(6):2512-2527. doi: 10.1111/nph.20012. Epub 2024 Jul 30.

Abstract

Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval-augmented dual-view retrosynthesis (READRetro) as a practical bio-retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio-retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting-edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single- and multi-step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real-world bio-retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user-friendly website (https://readretro.net) and the open-source code of READRetro have been made available.

摘要

植物作为一种固着生物,会产生各种次生代谢产物来与环境相互作用。这些化学物质因其生态意义和显著的生物活性而引起了植物科学界的关注。然而,从目标分子到代谢构建块预测完整的生物合成途径仍然是一个挑战。在这里,我们提出检索增强型双视图反合成(READRetro)作为一种实用的生物反合成工具,用于预测植物天然产物的生物合成途径。传统的生物反合成模型在预测天然产物的生物合成途径方面的能力有限。READRetro 通过结合最先进的深度学习架构、集成方法和两个检索器进行了优化,以预测复杂的代谢途径。对单步和多步反合成的评估表明,READRetro 的每个组件都显著提高了其预测生物合成途径的能力。READRetro 还能够提出单萜吲哚生物碱等次生代谢物的已知途径和 menisdaurilide 的未知途径,证明了它在植物天然产物的实际生物反合成中的适用性。对于对次生代谢物生物合成和生产感兴趣的研究人员,我们提供了一个用户友好的网站(https://readretro.net)和 READRetro 的开源代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验