Department of Information Sciences, Division of Science and Technology, University of Education, Lahore, Pakistan.
School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
Skin Res Technol. 2024 Aug;30(8):e13878. doi: 10.1111/srt.13878.
Skin diseases are severe diseases. Identification of these severe diseases depends upon the abstraction of atypical skin regions. The segmentation of these skin diseases is essential to rheumatologists in risk impost and for valuable and vital decision-making. Skin lesion segmentation from images is a crucial step toward achieving this goal-timely exposure of malignancy in psoriasis expressively intensifies the persistence ratio. Defies occur when people presume skin diseases they have without accurately and precisely incepted. However, analyzing malignancy at runtime is a big challenge due to the truncated distinction of the visual similarity between malignance and non-malignance lesions. However, images' different shapes, contrast, and vibrations make skin lesion segmentation challenging. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation.
This paper introduces a skin lesions segmentation model that integrates two intelligent methodologies: Bayesian inference and edge intelligence. In the segmentation model, we deal with edge intelligence to utilize the texture features for the segmentation of skin lesions. In contrast, Bayesian inference enhances skin lesion segmentation's accuracy and efficiency.
We analyze our work along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions from seminal works and a systematic viewpoint and examine how these dimensions have influenced current trends.
We summarize our work with previously used techniques in a comprehensive table to facilitate comparisons. Our experimental results show that Bayesian-Edge networks can boost the diagnostic performance of skin lesions by up to 87.80% without incurring additional parameters of heavy computation.
皮肤病是严重的疾病。这些严重疾病的识别取决于非典型皮肤区域的提取。这些皮肤病的分割对于风湿科医生进行风险评估和做出有价值和关键的决策至关重要。从图像中分割皮肤病变是实现这一目标的关键步骤——及时发现银屑病中的恶性病变显著提高了持续性比例。当人们未经准确和精确地初始诊断就假定自己患有皮肤病时,就会出现误诊。然而,由于恶性病变和非恶性病变之间视觉相似性的截断差异,在运行时分析恶性病变是一个巨大的挑战。然而,图像的不同形状、对比度和振动使得皮肤病变分割具有挑战性。最近,许多研究人员已经探索了将深度学习模型应用于皮肤病变分割的适用性。
本文介绍了一种皮肤病变分割模型,该模型集成了两种智能方法:贝叶斯推断和边缘智能。在分割模型中,我们处理边缘智能,利用纹理特征进行皮肤病变分割。相比之下,贝叶斯推断提高了皮肤病变分割的准确性和效率。
我们从多个维度分析了我们的工作,包括输入数据(数据集、预处理和合成数据生成)、模型设计(架构、模块)和评估方面(数据标注要求和分割性能)。我们从开创性工作和系统的角度讨论了这些维度,并考察了它们如何影响当前的趋势。
我们在一个全面的表格中总结了我们之前使用的技术,以便于比较。我们的实验结果表明,贝叶斯-边缘网络可以将皮肤病变的诊断性能提高高达 87.80%,而不会增加额外的大量计算参数。