Suppr超能文献

基于物联网的混合深度学习方法对皮肤损伤的分割与分类

Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things.

机构信息

Department of Computer Science and Information Technology, Superior University Lahore, Lahore, Pakistan.

MLC Research Lab, Okara, Pakistan.

出版信息

Skin Res Technol. 2023 Nov;29(11):e13524. doi: 10.1111/srt.13524.

Abstract

INTRODUCTION

Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques.

METHOD

This research uses a hybrid deep learning model that combines two cutting-edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset.

RESULTS

The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state-of-the-art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well.

CONCLUSION

In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.

摘要

简介

在医疗物联网(IoMT)的背景下,皮肤损伤分析至关重要。为了提高皮肤损伤分析的准确性和效率,CAD 系统发挥着关键作用。本研究使用混合深度学习技术,重点关注从皮肤镜图像中分割和分类皮肤损伤。

方法

本研究使用了一种混合深度学习模型,该模型结合了两种前沿方法:基于掩模区域的卷积神经网络(MRCNN)进行语义分割和 ResNet50 进行损伤检测。为了准确定位皮肤损伤的位置,使用 MRCNN 进行边界描绘。我们收集了大量带注释的皮肤镜图像,用于全面的模型训练。使用这个数据集,从头到尾训练混合深度学习模型,以捕获图像的细微表示。

结果

使用皮肤镜图像进行的实验结果表明,所提出的混合方法优于当前的最先进方法。通过对 95.49%的分割精度测量,该模型能够将病变分割成不同的组。此外,皮肤病变的分类表现出很高的准确性和可靠性,这是对传统方法的显著改进。该模型在 ISIC 2020 挑战赛数据集上进行了测试,准确率达到了完美的 96.75%。与 IoMT 中的当前最佳实践相比,分割和分类模型表现出色。

结论

总之,本文的混合深度学习策略在皮肤损伤分割和分类方面非常有效。结果表明,该模型有可能提高 IoMT 中的诊断准确性,并且优于当前的黄金标准。在 ISIC 2020 挑战赛数据集上获得的优异结果进一步证实了所提出的皮肤损伤分析方法的可行性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8788/10646956/dc56a75a1eb0/SRT-29-e13524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验