Suppr超能文献

运动皮层失活会损害执行保持静止的中心到外周抓握任务的小鼠的校正亚运动。

Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task.

机构信息

Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States.

Department of Physics, Cornell University, Ithaca, New York, United States.

出版信息

J Neurophysiol. 2024 Sep 1;132(3):829-848. doi: 10.1152/jn.00241.2023. Epub 2024 Jul 31.

Abstract

Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic submovements, while photoinhibition was used to test roles of motor cortical areas. Inactivation of both caudal and rostral forelimb areas preserved the ability to produce aimed reaches, but reduced reach speed. Inactivation specifically of contralateral caudal forelimb area (CFA) additionally impaired the ability to aim corrective submovements to remembered locations following target undershoots. Our findings show that motor cortical inactivations reduce the gain of forelimb movements but that inactivation specifically of contralateral CFA impairs corrective movements important for reaching a target location. To test the role of different cortical areas in holding still and reaching to targets, this study combined home-cage training with optogenetic silencing as mice engaged in a learned center-out-reach task. Inactivation specifically of contralateral caudal forelimb area (CFA) impaired corrective movements necessary to reach spatial targets to earn reward.

摘要

针对空间目标的静止和瞄准动作可能依赖于不同的神经回路。本研究采用自动化笼内训练和灵敏的操纵杆,训练自由活动的小鼠接触操纵杆,保持前肢静止,然后伸向有奖励的目标位置。通过用具有清晰分辨的亚毫米级微运动启动前肢序列,然后到达学习的空间目标,小鼠学会了这个任务。数以十万计的轨迹被分解为数百万个运动学亚运动,同时用光遗传学来测试运动皮层区域的作用。尾部和头部前肢区域的失活保留了产生定向到达的能力,但降低了到达速度。特异性失活对侧尾部前肢区域(CFA)还损害了在目标下落后,对记忆位置进行校正亚运动的能力。我们的研究结果表明,运动皮层失活降低了前肢运动的增益,但特异性失活对侧 CFA 损害了对到达目标位置至关重要的校正运动。为了测试不同皮层区域在静止和到达目标中的作用,本研究将笼内训练与光遗传学沉默相结合,让小鼠在学习的中心外到达任务中进行操作。特异性失活对侧尾部前肢区域(CFA)损害了到达空间目标以获得奖励所需的校正运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验