Program in Biophysics, Harvard University, Cambridge, MA, USA.
Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
Nat Neurosci. 2023 Oct;26(10):1791-1804. doi: 10.1038/s41593-023-01431-3. Epub 2023 Sep 4.
The ability to sequence movements in response to new task demands enables rich and adaptive behavior. However, such flexibility is computationally costly and can result in halting performances. Practicing the same motor sequence repeatedly can render its execution precise, fast and effortless, that is, 'automatic'. The basal ganglia are thought to underlie both types of sequence execution, yet whether and how their contributions differ is unclear. We parse this in rats trained to perform the same motor sequence instructed by cues and in a self-initiated overtrained, or 'automatic,' condition. Neural recordings in the sensorimotor striatum revealed a kinematic code independent of the execution mode. Although lesions reduced the movement speed and affected detailed kinematics similarly, they disrupted high-level sequence structure for automatic, but not visually guided, behaviors. These results suggest that the basal ganglia are essential for 'automatic' motor skills that are defined in terms of continuous kinematics, but can be dispensable for discrete motor sequences guided by sensory cues.
能够根据新的任务需求对运动进行测序,从而实现丰富而适应性强的行为。然而,这种灵活性在计算上代价高昂,可能导致执行过程中断。反复练习相同的运动序列可以使其执行变得精确、快速且毫不费力,即“自动化”。基底神经节被认为是这两种类型的序列执行的基础,但它们的贡献是否以及如何不同尚不清楚。我们在接受训练以根据提示执行相同运动序列的大鼠中解析了这一点,以及在自我启动的过度训练或“自动”条件下。感觉运动纹状体中的神经记录显示出一种与执行模式无关的运动学代码。尽管损伤降低了运动速度并以相似的方式影响了详细的运动学,但它们破坏了自动行为的高级序列结构,而不是视觉引导的行为。这些结果表明,基底神经节对于以连续运动学定义的“自动”运动技能是必不可少的,但对于由感觉线索引导的离散运动序列可能是可有可无的。
Nat Neurosci. 2021-9
Nat Neurosci. 2025-7-28
J Neurosci. 2024-10-2
Curr Opin Neurobiol. 2022-10
Sci Adv. 2022-3-4
Nat Neurosci. 2021-9
Behav Brain Sci. 2020-12-2
Curr Biol. 2020-11-16
Sci Rep. 2020-8-6