Wolff Steffen B E, Ko Raymond, Ölveczky Bence P
Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
Sci Adv. 2022 Feb 25;8(8):eabk0231. doi: 10.1126/sciadv.abk0231.
The acquisition and execution of motor skills are mediated by a distributed motor network, spanning cortical and subcortical brain areas. The sensorimotor striatum is an important cog in this network, yet the roles of its two main inputs, from motor cortex and thalamus, remain largely unknown. To address this, we silenced the inputs in rats trained on a task that results in highly stereotyped and idiosyncratic movement patterns. While striatal-projecting motor cortex neurons were critical for learning these skills, silencing this pathway after learning had no effect on performance. In contrast, silencing striatal-projecting thalamus neurons disrupted the execution of the learned skills, causing rats to revert to species-typical pressing behaviors and preventing them from relearning the task. These results show distinct roles for motor cortex and thalamus in the learning and execution of motor skills and suggest that their interaction in the striatum underlies experience-dependent changes in subcortical motor circuits.
运动技能的习得与执行由一个分布广泛的运动网络介导,该网络跨越皮质和皮质下脑区。感觉运动纹状体是这个网络中的一个重要组成部分,然而,它的两个主要输入源(来自运动皮质和丘脑)的作用在很大程度上仍不为人所知。为了解决这个问题,我们在接受一项能产生高度刻板和特异运动模式训练的大鼠中,使这些输入失活。虽然投射到纹状体的运动皮质神经元对于学习这些技能至关重要,但在学习后使该通路失活对行为表现没有影响。相比之下,使投射到纹状体的丘脑神经元失活会干扰所学技能的执行,导致大鼠恢复到物种典型的按压行为,并阻止它们重新学习该任务。这些结果表明运动皮质和丘脑在运动技能的学习与执行中具有不同的作用,并表明它们在纹状体中的相互作用是皮质下运动回路中依赖经验变化的基础。