Suppr超能文献

利用一种新的机器学习系统预测约旦的超广谱β-内酰胺酶细菌和多重耐药性。

Extended Spectrum beta-Lactamase Bacteria and Multidrug Resistance in Jordan are Predicted Using a New Machine-Learning system.

作者信息

Al-Khlifeh Enas M, Alkhazi Ibrahim S, Alrowaily Majed Abdullah, Alghamdi Mansoor, Alrashidi Malek, Tarawneh Ahmad S, Alkhawaldeh Ibraheem M, Hassanat Ahmad B

机构信息

Department of Medical Laboratory Science, Al-Balqa Applied University, Al-salt, 19117, Jordan.

College of Computers & Information Technology, University of Tabuk, Tabuk, 47512, Saudi Arabia.

出版信息

Infect Drug Resist. 2024 Jul 25;17:3225-3240. doi: 10.2147/IDR.S469877. eCollection 2024.

Abstract

BACKGROUND

The incidence of microorganisms with extended-spectrum beta-lactamase (ESBL) is on the rise, posing a significant public health concern. The current application of machine learning (ML) focuses on predicting bacterial resistance to optimize antibiotic therapy. This study employs ML to forecast the occurrence of bacteria that generate ESBL and demonstrate resistance to multiple antibiotics (MDR).

METHODS

Six popular ML algorithms were initially trained on antibiotic resistance test patient reports (n = 489) collected from Al-Hussein/Salt Hospital in Jordan. Trained outcome models predict ESBL and multidrug resistance profiles based on microbiological and patients' clinical data. The results were utilized to select the optimal ML method to predict ESBL's most associated features.

RESULTS

(, 82%) was the most commonly identified microbe generating ESBL, displaying multidrug resistance. Urinary tract infections (UTIs) constituted the most frequently observed clinical diagnosis (68.7%). Classification and Regression Trees (CART) and Random Forest (RF) classifiers emerged as the most effective algorithms. The relevant features associated with the emergence of ESBL include age and different classes of antibiotics, including cefuroxime, ceftazidime, cefepime, trimethoprim/ sulfamethoxazole, ciprofloxacin, and gentamicin. Fosfomycin nitrofurantoin, piperacillin/tazobactam, along with amikacin, meropenem, and imipenem, had a pronounced inverse relationship with the ESBL class.

CONCLUSION

CART and RF-based ML algorithms can be employed to predict the most important features of ESBL. The significance of monitoring trends in ESBL infections is emphasized to facilitate the administration of appropriate antibiotic therapy.

摘要

背景

产超广谱β-内酰胺酶(ESBL)微生物的发生率正在上升,引起了重大的公共卫生关注。机器学习(ML)目前的应用集中在预测细菌耐药性以优化抗生素治疗。本研究采用ML来预测产生ESBL并对多种抗生素耐药(MDR)的细菌的发生情况。

方法

最初使用六种流行的ML算法对从约旦侯赛因/盐医院收集的抗生素耐药性测试患者报告(n = 489)进行训练。训练后的结果模型基于微生物学和患者临床数据预测ESBL和多重耐药性特征。利用结果选择最佳的ML方法来预测与ESBL最相关的特征。

结果

(,82%)是最常见的产ESBL微生物,表现出多重耐药性。尿路感染(UTIs)是最常观察到的临床诊断(68.7%)。分类与回归树(CART)和随机森林(RF)分类器是最有效的算法。与ESBL出现相关的相关特征包括年龄和不同类别的抗生素,包括头孢呋辛、头孢他啶、头孢吡肟、甲氧苄啶/磺胺甲恶唑、环丙沙星和庆大霉素。磷霉素、呋喃妥因、哌拉西林/他唑巴坦以及阿米卡星、美罗培南和亚胺培南与ESBL类别呈明显的负相关。

结论

基于CART和RF的ML算法可用于预测ESBL的最重要特征。强调了监测ESBL感染趋势的重要性,以促进适当抗生素治疗的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cf/11287471/786dc2a20cf1/IDR-17-3225-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验