Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
Department of Hospital Quality Management, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
J Glob Antimicrob Resist. 2022 Jun;29:155-162. doi: 10.1016/j.jgar.2022.03.003. Epub 2022 Mar 10.
Multidrug-resistant bacteria (MDRB) result in nosocomial infections and a substantial disease burden for hospitalised patients worldwide. However, strategies to control drug resistance at the hospital level are lacking. In this study, we aimed to find important indicators for risk assessment and predicting MDRB infections in the hospital.
Using real-world data and machine learning models, we conducted a retrospective study from 2010 to 2020 in a teaching hospital to analyse the trends and characteristics of MDRB infections. Combining 39 hospital indicators, we used a random forest model and cross-correlation analysis to explore the important factors affecting MDRB and their predictive power. We built a decision tree model to predict the number of hospitalised patients with MDRB infection.
The number of hospitalised rescues and rate of rational perioperative antibacterial drug use in type I and II incision operations were correlated with the number of patients with MDRB infection after 1-2 months. The number of hospitalised operations and rate of antibiotics use in emergency patients had an effect on current MDRB-susceptible patients. The indicators, including hospital operation volume and antibacterial drug use, had a positive or negative quantitative relationship with the number of patients with MDRB infection, and their thresholds could be fit to the MDRB prediction model.
Surgical, emergency, and hospitalised rescue patients showed the highest risk of MDRB infection. Standardised indicators such as clinical pathway rate and rational antibiotic use rate could be used to control the development and spread of MDRB infections in the hospital.
多药耐药菌(MDRB)导致医院感染,给全球住院患者带来沉重的疾病负担。然而,在医院层面控制耐药性的策略却很缺乏。本研究旨在寻找重要指标,用于医院 MDRB 感染的风险评估和预测。
利用真实世界的数据和机器学习模型,我们对一家教学医院 2010 年至 2020 年的 MDRB 感染情况进行了回顾性研究,分析 MDRB 感染的趋势和特征。结合 39 项医院指标,我们使用随机森林模型和互相关分析来探讨影响 MDRB 的重要因素及其预测能力。我们建立了决策树模型来预测 MDRB 感染住院患者的数量。
I 型和 II 型切口手术中住院抢救人数和围手术期合理使用抗菌药物的比例与 1-2 个月后 MDRB 感染患者人数相关。住院手术数量和急诊患者抗菌药物使用率对当前 MDRB 敏感患者有影响。包括医院手术量和抗菌药物使用量在内的指标与 MDRB 感染患者数量呈正相关或负相关关系,且其阈值可拟合至 MDRB 预测模型。
外科、急诊和住院抢救患者的 MDRB 感染风险最高。可以使用标准化指标,如临床路径率和合理抗生素使用率,来控制医院 MDRB 感染的发生和传播。