Suppr超能文献

基于决策树的学习与实验室数据挖掘:一种高效的阿米巴病检测方法。

Decision tree-based learning and laboratory data mining: an efficient approach to amebiasis testing.

作者信息

Al-Khlifeh Enas, Tarawneh Ahmad S, Almohammadi Khalid, Alrashidi Malek, Hassanat Ramadan, Hassanat Ahmad B

机构信息

Department of Applied Biology, Al-Balqa Applied University, Salt, Jordan.

Faculty of Information Technology, Mutah University, Mutah, Jordan.

出版信息

Parasit Vectors. 2025 Jan 29;18(1):33. doi: 10.1186/s13071-024-06618-6.

Abstract

BACKGROUND

Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples. However, this approach can sometimes result in the misinterpretation of amebiasis as other gastroenteritis (GE) conditions. The goal of the work is to produce a machine learning (ML) model that uses laboratory findings and demographic information to automatically predict amebiasis.

METHOD

Data extracted from Jordanian electronic medical records (EMR) between 2020 and 2022 comprised 763 amebic cases and 314 nonamebic cases. Patient demographics, clinical signs, microscopic diagnoses, and leukocyte counts were used to train eight decision tree algorithms and compare their accuracy of predictions. Feature ranking and correlation methods were implemented to enhance the accuracy of classifying amebiasis from other conditions.

RESULTS

The primary dependent variables distinguishing amebiasis include the percentage of neutrophils, mucus presence, and the counts of red blood cells (RBCs) and white blood cells (WBCs) in stool samples. Prediction accuracy and precision ranged from 92% to 94.6% when employing decision tree classifiers including decision tree (DT), random forest (RF), XGBoost, AdaBoost, and gradient boosting (GB). However, the optimized RF model demonstrated an area under the curve (AUC) of 98% for detecting amebiasis from laboratory data, utilizing only 300 estimators with a max depth of 20. This study highlights that amebiasis is a significant health concern in Jordan, responsible for 17.22% of all gastroenteritis episodes in this study. Male sex and age were associated with higher incidence of amebiasis (P = 0.014), with over 25% of cases occurring in infants and toddlers.

CONCLUSIONS

The application of ML to EMR can accurately predict amebiasis. This finding significantly contributes to the emerging use of ML as a decision support system in parasitic disease diagnosis.

摘要

背景

阿米巴病是一个重大的全球健康问题。这在发展中国家尤为明显,在这些国家感染更为常见。实验室中的主要诊断方法是对粪便样本进行显微镜检查。然而,这种方法有时会导致将阿米巴病误诊为其他肠胃炎(GE)疾病。这项工作的目标是创建一个利用实验室检查结果和人口统计学信息自动预测阿米巴病的机器学习(ML)模型。

方法

从2020年至2022年约旦电子病历(EMR)中提取的数据包括763例阿米巴病例和314例非阿米巴病例。患者的人口统计学信息、临床症状、显微镜诊断和白细胞计数被用于训练八种决策树算法,并比较它们的预测准确性。实施了特征排名和相关性方法以提高从其他疾病中分类阿米巴病的准确性。

结果

区分阿米巴病的主要因变量包括中性粒细胞百分比、黏液存在情况以及粪便样本中的红细胞(RBC)和白细胞(WBC)计数。当使用包括决策树(DT)、随机森林(RF)、XGBoost、AdaBoost和梯度提升(GB)在内的决策树分类器时,预测准确性和精确率在92%至94.6%之间。然而,优化后的RF模型在利用实验室数据检测阿米巴病时,曲线下面积(AUC)为98%,仅使用了300个估计器,最大深度为20。这项研究强调,阿米巴病在约旦是一个重大的健康问题,在本研究中占所有肠胃炎发作的17.22%。男性和年龄与阿米巴病的较高发病率相关(P = 0.014),超过25%的病例发生在婴幼儿中。

结论

将ML应用于EMR可以准确预测阿米巴病。这一发现显著促进了ML作为寄生虫病诊断决策支持系统的新兴应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95e8/11780931/8530b3e76cb5/13071_2024_6618_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验