Gendelman Sheina, Zvuloni Eran, Oster Julien, Suleiman Mahmoud, Derman Raphaël, Behar Joachim A
Faculty of Biomedical Engineering, Technion-IIT, Julius Silver Building, Haifa 3200003, Israel.
IADI, U1254, Inserm, Université de Lorraine, Nancy, France.
Eur Heart J Digit Health. 2024 Apr 3;5(4):409-415. doi: 10.1093/ehjdh/ztae025. eCollection 2024 Jul.
Ventricular tachycardia (VT) is a dangerous cardiac arrhythmia that can lead to sudden cardiac death. Early detection and management of VT is thus of high clinical importance. We hypothesize that it is possible to identify patients with VT during sinus rhythm by leveraging a continuous 24 h Holter electrocardiogram and artificial intelligence.
We analysed a retrospective Holter data set from the Rambam Health Care Campus, Haifa, Israel, which included 1773 Holter recordings from 1570 non-VT patients and 52 recordings from 49 VT patients. Morphological and heart rate variability features were engineered from the raw electrocardiogram signal and fed, together with demographical features, to a data-driven model for the task of classifying a patient as either VT or non-VT. The model obtained an area under the receiving operative curve of 0.76 ± 0.07. Feature importance suggested that the proportion of premature ventricular beats and beat-to-beat interval variability was discriminative of VT, while demographic features were not.
This original study demonstrates the feasibility of VT identification from sinus rhythm in Holter.
室性心动过速(VT)是一种危险的心律失常,可导致心源性猝死。因此,VT的早期检测和管理具有高度的临床重要性。我们假设通过利用连续24小时动态心电图和人工智能,有可能在窦性心律期间识别出VT患者。
我们分析了来自以色列海法兰巴姆医疗保健校园的回顾性动态心电图数据集,其中包括1570名非VT患者的1773份动态心电图记录和49名VT患者的52份记录。从原始心电图信号中提取形态学和心率变异性特征,并将其与人口统计学特征一起输入到一个数据驱动的模型中,用于将患者分类为VT或非VT。该模型的受试者工作曲线下面积为0.76±0.07。特征重要性表明,室性早搏的比例和逐搏间期变异性对VT具有鉴别意义,而人口统计学特征则不然。
这项原创性研究证明了在动态心电图中从窦性心律识别VT的可行性。