Suppr超能文献

一种通过分析窦性心律期间的心电图来识别室性心动过速患者的人工智能动态心电图算法。

An artificial intelligence-enabled Holter algorithm to identify patients with ventricular tachycardia by analysing their electrocardiogram during sinus rhythm.

作者信息

Gendelman Sheina, Zvuloni Eran, Oster Julien, Suleiman Mahmoud, Derman Raphaël, Behar Joachim A

机构信息

Faculty of Biomedical Engineering, Technion-IIT, Julius Silver Building, Haifa 3200003, Israel.

IADI, U1254, Inserm, Université de Lorraine, Nancy, France.

出版信息

Eur Heart J Digit Health. 2024 Apr 3;5(4):409-415. doi: 10.1093/ehjdh/ztae025. eCollection 2024 Jul.

Abstract

AIMS

Ventricular tachycardia (VT) is a dangerous cardiac arrhythmia that can lead to sudden cardiac death. Early detection and management of VT is thus of high clinical importance. We hypothesize that it is possible to identify patients with VT during sinus rhythm by leveraging a continuous 24 h Holter electrocardiogram and artificial intelligence.

METHODS AND RESULTS

We analysed a retrospective Holter data set from the Rambam Health Care Campus, Haifa, Israel, which included 1773 Holter recordings from 1570 non-VT patients and 52 recordings from 49 VT patients. Morphological and heart rate variability features were engineered from the raw electrocardiogram signal and fed, together with demographical features, to a data-driven model for the task of classifying a patient as either VT or non-VT. The model obtained an area under the receiving operative curve of 0.76 ± 0.07. Feature importance suggested that the proportion of premature ventricular beats and beat-to-beat interval variability was discriminative of VT, while demographic features were not.

CONCLUSION

This original study demonstrates the feasibility of VT identification from sinus rhythm in Holter.

摘要

目的

室性心动过速(VT)是一种危险的心律失常,可导致心源性猝死。因此,VT的早期检测和管理具有高度的临床重要性。我们假设通过利用连续24小时动态心电图和人工智能,有可能在窦性心律期间识别出VT患者。

方法和结果

我们分析了来自以色列海法兰巴姆医疗保健校园的回顾性动态心电图数据集,其中包括1570名非VT患者的1773份动态心电图记录和49名VT患者的52份记录。从原始心电图信号中提取形态学和心率变异性特征,并将其与人口统计学特征一起输入到一个数据驱动的模型中,用于将患者分类为VT或非VT。该模型的受试者工作曲线下面积为0.76±0.07。特征重要性表明,室性早搏的比例和逐搏间期变异性对VT具有鉴别意义,而人口统计学特征则不然。

结论

这项原创性研究证明了在动态心电图中从窦性心律识别VT的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验