Singh Jagmeet P, Fontanarava Julien, de Massé Grégoire, Carbonati Tanner, Li Jia, Henry Christine, Fiorina Laurent
Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
Cardiologs, 136 rue Saint Denis, 75002 Paris, France.
Eur Heart J Digit Health. 2022 Apr 6;3(2):208-217. doi: 10.1093/ehjdh/ztac014. eCollection 2022 Jun.
Atrial fibrillation (AF) is associated with significant morbidity but remains underdiagnosed. A 24 h ambulatory electrocardiogram (ECG) is largely used as a tool to document AF but yield remains limited. We hypothesize that a deep learning model can identify patients at risk of AF in the 2 weeks following a 24 h ambulatory ECG with no documented AF.
We identified a training set of Holter recordings of 7-15 days duration, in which no AF could be found in the first 24 h. We trained a neural network to predict the presence or absence of AF in the 15 following days, using only the first 24 h of the recording. We evaluated the neural network on a testing set and an external data set not used during algorithm development. In the testing data set, out of 9993 Holters with no AF on the first day, we found 361 (4%) recordings with AF within the 15 subsequent days of monitoring [5808, 218 (4%), respectively in the external data set]. The neural network could discriminate future AF with an area under the receiver operating curve, a sensitivity, and specificity of 79.4%, 76%, and 69%, respectively (75.8%, 78%, and 58% in the external data set), and outperformed ECG features previously shown to be predictive of AF.
We show here the very first study of short-term AF prediction using 24 h Holter monitoring. This could help identify patients who would benefit the most from longer recordings and proactively initiate treatment and AF mitigation strategies in high-risk patients.
心房颤动(AF)与显著的发病率相关,但仍未得到充分诊断。24小时动态心电图(ECG)在很大程度上被用作记录AF的工具,但检出率仍然有限。我们假设深度学习模型可以在24小时动态心电图未记录到AF的情况下,识别出未来2周内有AF风险的患者。
我们确定了一个持续7 - 15天的动态心电图记录训练集,其中前24小时未发现AF。我们训练了一个神经网络,仅使用记录的前24小时来预测接下来15天内AF的有无。我们在一个测试集和算法开发过程中未使用的外部数据集上评估了该神经网络。在测试数据集中,在第一天没有AF的9993份动态心电图中,我们发现361份(4%)在随后15天的监测中有AF [在外部数据集中分别为5808份和218份(4%)]。该神经网络能够以受试者工作特征曲线下面积、敏感性和特异性分别为79.4%、76%和69%(在外部数据集中分别为75.8%、78%和58%)来区分未来的AF,并且优于先前显示可预测AF的ECG特征。
我们在此展示了第一项使用24小时动态心电图监测进行短期AF预测的研究。这有助于识别那些将从更长时间记录中获益最大的患者,并主动对高危患者启动治疗和AF缓解策略。