Liu Rui, Wu Hao, Chung Hoi Ying, Utomo Wahyu Prasetyo, Tian Yuanmeng, Shang Jin, Sit Patrick H-L, Ng Yun Hau
School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
Macau Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 99078, China.
Small. 2024 Nov;20(44):e2402779. doi: 10.1002/smll.202402779. Epub 2024 Jul 31.
Rationally designing photocatalysts is crucial for the solar-driven nitrogen reduction reaction (NRR) due to the stable N≡N triple bond. Metal-organic frameworks (MOFs) are considered promising candidates but suffer from insufficient active sites and inferior charge transport. Herein, it is demonstrated that incorporating 3d metal ions, such as zinc (Zn) or iron (Fe) ions, into Al-coordinated porphyrin MOFs (Al-PMOFs) enables the enhanced ammonia yield of 88.7 and 65.0 µg g h, 2.5- and 1.8-fold increase compared to the pristine Al-PMOF (35.4 µg g h), respectively. The origin of ammonia (NH) is verified via isotopic labeling experiments. Incorporating Zn or Fe into Al-PMOF generates active sites in Al-PMOF, that is, Zn-N or Fe-N sites, which not only facilitates the adsorption and activation of N molecules but suppresses the charge recombination. Photophysical and theoretical studies further reveal the upshift of the lowest unoccupied molecular orbital (LUMO) level to a more energetic position upon inserting 3d metal ions (with a more significant shift in Zn than Fe). The promoted nitrogen activation, suppressed charge recombination, and more negative LUMO levels in Al-PMOF(3d metal) contribute to a higher photocatalytic activity than pristine Al-PMOF. This work provides a promising strategy for designing photocatalysts for efficient solar-to-chemical conversion.
由于氮分子中稳定的N≡N三键,合理设计光催化剂对于太阳能驱动的氮还原反应(NRR)至关重要。金属有机框架(MOF)被认为是有前途的候选材料,但存在活性位点不足和电荷传输较差的问题。在此,研究表明,将锌(Zn)或铁(Fe)等3d金属离子引入铝配位卟啉MOF(Al-PMOF)中,可使氨产量分别提高到88.7和65.0 μg g⁻¹ h⁻¹,与原始Al-PMOF(35.4 μg g⁻¹ h⁻¹)相比分别提高了2.5倍和1.8倍。通过同位素标记实验验证了氨(NH₃)的来源。将Zn或Fe引入Al-PMOF会在Al-PMOF中产生活性位点,即Zn-N或Fe-N位点,这不仅有助于N₂分子的吸附和活化,还能抑制电荷复合。光物理和理论研究进一步揭示,插入3d金属离子后最低未占据分子轨道(LUMO)能级上移至能量更高的位置(Zn的移动比Fe更显著)。Al-PMOF(3d金属)中促进的氮活化、抑制的电荷复合以及更负的LUMO能级导致其光催化活性高于原始Al-PMOF。这项工作为设计用于高效太阳能到化学能转换的光催化剂提供了一种有前景的策略。