Suppr超能文献

通过胶体自组装实现十以上的光学折射率。

Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly.

作者信息

Kim NaYeoun, Huh Ji-Hyeok, Cho YongDeok, Park Sung Hun, Kim Hyeon Ho, Rho Kyung Hun, Lee Jaewon, Lee Seungwoo

机构信息

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.

Department of Applied Physics, Hanyang University, Ansan, 15588, Republic of Korea.

出版信息

Small. 2024 Nov;20(45):e2404223. doi: 10.1002/smll.202404223. Epub 2024 Jul 31.

Abstract

This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) and high refractive indices (n) within naturally occurring materials. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to ≈4.0 at optical frequencies. Previously, it is accepted that self-assembly enables the creation of nanogaps between metallic nanoparticles (NPs), boosting capacitive enhancement of P and resultant exceptionally high n at optical frequencies. The work focuses on assembling gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The systematic comparisons between each differently shaped Au NP monolayers elucidate the significance of capacitive coupling in achieving an unnaturally high n. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.

摘要

本研究展示了自组装光学超表面的发展,以克服天然材料中极化密度(P)和高折射率(n)的固有局限性。麦克斯韦宏观描述建立了P和n之间的联系,揭示了天然材料中的一个静态极限,即在光频下将n限制在约4.0。此前,人们认为自组装能够在金属纳米颗粒(NP)之间产生纳米间隙,增强P的电容增强效应,并在光频下产生异常高的n。这项工作的重点是通过合理设计聚合物配体来平衡吸引力和排斥力,将金(Au)NP组装成紧密堆积的单层,因为通过聚合物刷介导的紧密堆积Au NP单层的自组装在大面积上得以稳健实现。由此产生的金纳米球(NS)、纳米八面体(NO)和纳米立方体(NC)单层表现出高宏观完整性和结晶度,足以将n提高到创纪录的高水平。对每种不同形状的Au NP单层进行的系统比较阐明了电容耦合在实现非自然高n方面的重要性。在光频下实现的n为10.12,这是一个基准,突出了多面体Au NP在推进光学超表面方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验