Suppr超能文献

低成本自重构高熵氧化物作为阴离子交换膜水电解槽的超耐用析氧反应电催化剂

Low-Cost Self-Reconstructed High Entropy Oxide as an Ultra-Durable OER Electrocatalyst for Anion Exchange Membrane Water Electrolyzer.

作者信息

Karthikeyan S C, Ramakrishnan Shanmugam, Prabhakaran Sampath, Subramaniam Mohan Raj, Mamlouk Mohamed, Kim Do Hwan, Yoo Dong Jin

机构信息

Department of Energy Storage/Conversion Engineering (BK21 FOUR) for Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.

School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.

出版信息

Small. 2024 Nov;20(45):e2402241. doi: 10.1002/smll.202402241. Epub 2024 Jul 31.

Abstract

Future energy loss can be minimized to a greater extent via developing highly active electrocatalysts for alkaline water electrolyzers. Incorporating an innovative design like high entropy oxides, dealloying, structural reconstruction, in situ activation can potentially reduce the energy barriers between practical and theoretical potentials. Here, a Fd-3m spinel group high entropy oxide is developed via a simple solvothermal and calcination approach. The developed (FeCoMnZnMg)O electrocatalyst shows a near equimolar distribution of all the metal elements resulting in higher entropy (ΔS ≈1.61R) and higher surface area. The self-reconstructed spinel high entropy oxide (S-HEO) catalyst exhibited a lower overpotential of 240 mV to reach 10 mA cm and enhanced reaction kinetics (59 mV dec). Noticeably, the S-HEO displayed an outstanding durability of 1000 h without any potential loss, significantly outperforming most of the reported OER electrocatalysts. Further, S-HEO is evaluated as the anode catalyst for an anion exchange membrane water electrolyzer (AEMWE) in 1 m, 0.1 m KOH, and DI water at 20 and 60 °C. These results demonstrate that S-HEO is a highly attractive, non-noble class of materials for high active oxygen evolution reaction (OER) electrocatalysts allowing fine-tuning beyond the limits of bi- or trimetallic oxides.

摘要

通过开发用于碱性水电解槽的高活性电催化剂,可以在更大程度上将未来的能量损失降至最低。采用诸如高熵氧化物、脱合金、结构重构、原位活化等创新设计,有可能降低实际电位和理论电位之间的能垒。在此,通过一种简单的溶剂热法和煅烧法制备了一种Fd-3m尖晶石族高熵氧化物。所制备的(FeCoMnZnMg)O电催化剂显示出所有金属元素近乎等摩尔分布,从而导致更高的熵(ΔS≈1.61R)和更大的表面积。自重构的尖晶石高熵氧化物(S-HEO)催化剂在达到10 mA cm时表现出240 mV的较低过电位,并增强了反应动力学(59 mV dec)。值得注意的是,S-HEO表现出1000小时的出色耐久性,没有任何电位损失,明显优于大多数已报道的析氧反应(OER)电催化剂。此外,在20和60°C下,对S-HEO在1 m、0.1 m KOH和去离子水中作为阴离子交换膜水电解槽(AEMWE)的阳极催化剂进行了评估。这些结果表明,S-HEO是一类极具吸引力的非贵金属材料,适用于高活性析氧反应(OER)电催化剂,能够在二元或三元金属氧化物的极限之外进行微调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验