Suppr超能文献

哺乳动物听觉感受器拓扑差异的单细胞转录组图谱。

The single-cell transcriptomic landscape of the topological differences in mammalian auditory receptors.

机构信息

State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.

School of Engineering, Vanderbilt University, Nashville, 37240, USA.

出版信息

Sci China Life Sci. 2024 Nov;67(11):2398-2410. doi: 10.1007/s11427-024-2672-1. Epub 2024 Jul 29.

Abstract

Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.

摘要

哺乳动物的毛细胞(HCs)沿着耳蜗轴呈螺旋状排列,对应于不同的频率范围。作为主要的声音探测器,HCs 将组成频率的成分空间分隔成一个地形图谱。HCs 在解剖学和生理学特征上表现出显著的多样性,但对于 HCs 的耳蜗拓扑图谱的组织或参与这一过程的分子知之甚少。使用单细胞 RNA 测序,我们确定了内毛细胞和外毛细胞的不同分子特征,并鉴定了许多呈梯度表达的位置依赖基因。新鉴定的基因,如 Ptn、Rxra 和 Nfe2l2,与音位有关。我们采用 SCENIC 算法来预测可能形成这些音位梯度的转录因子。此外,我们证实了与音位相关的转录因子 Nfe2l2 在小鼠体内对于感知低到中频率的声音至关重要。细胞间通讯的分析揭示了内毛细胞与螺旋神经节神经元之间潜在的受体-配体网络,包括 BDNF-Ntrk 和 PTN-Scd4 等途径,它们可能在音位维持中发挥重要作用。总的来说,这些发现表明分子梯度是 HCs 选择声音频率的组织原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验