Suppr超能文献

PISC-Net:一种用于预测超表面红外发射光谱的综合神经网络框架。

PISC-Net: A Comprehensive Neural Network Framework for Predicting Metasurface Infrared Emission Spectra.

作者信息

Li Changsheng, Chen Jincheng, Lin Qunqing, Han Yuge

机构信息

School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.

MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing 210094, PR China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42816-42827. doi: 10.1021/acsami.4c05709. Epub 2024 Jul 31.

Abstract

Multifunctional metasurfaces have exhibited extensive potential in various fields, owing to their unparalleled capacity for controlling electromagnetic wave characteristics. The precise resolution is achieved through numerical simulation in conventional metasurface design methodologies. Nevertheless, the simulations using these approaches are inherently computationally costly. This paper proposes the Physical Insight Self-Correcting Convolutional Network (PISC-Net), which enables rapid prediction of infrared radiation spectra of metasurfaces with remarkable generalization capacity. In contrast to preceding prediction networks, we have enhanced the cognitive ability of the network to recognize physical mechanisms by designing parameter-communication modules and integrating a priori knowledge grounded in the parameter association mechanism. Additionally, we proposed an effective strategy for constructing data sets that facilitate precise tuning of absorption bands in the entire spectral range (3-14 μm) and serves to reduce the costs associated with data set development. Transfer learning is employed to obtain precise predictions for large-period metasurfaces from limited data sets. This approach demonstrates that a network trained exclusively on simulation data could predict experimental outcomes accurately, as proved by the comparative analysis between simulation, experimental testing, and prediction results. The average mean square error is less than 4%.

摘要

多功能超表面由于其在控制电磁波特性方面无与伦比的能力,已在各个领域展现出广泛的潜力。在传统超表面设计方法中,精确分辨率是通过数值模拟实现的。然而,使用这些方法进行模拟本质上计算成本很高。本文提出了物理洞察自校正卷积网络(PISC-Net),它能够快速预测超表面的红外辐射光谱,具有显著的泛化能力。与先前的预测网络相比,我们通过设计参数通信模块并整合基于参数关联机制的先验知识,增强了网络识别物理机制的认知能力。此外,我们提出了一种构建数据集的有效策略,该策略有助于在整个光谱范围(3 - 14μm)内精确调整吸收带,并有助于降低与数据集开发相关的成本。采用迁移学习从有限的数据集中获得对大周期超表面的精确预测。如模拟、实验测试和预测结果之间的对比分析所示,这种方法表明仅在模拟数据上训练的网络可以准确预测实验结果。平均均方误差小于4%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验