Suppr超能文献

评估聚类算法在多靶点立体定向放射外科中的有效性。

Evaluating effectiveness of clustering algorithms in multiple target stereotactic radiosurgery.

机构信息

Department of Radiation Oncology, Kaiser Permanente, Dublin, CA, United States of America.

出版信息

Biomed Phys Eng Express. 2024 Aug 8;10(5). doi: 10.1088/2057-1976/ad6991.

Abstract

. Single-isocenter-multiple-target technique for stereotactic radiosurgery (SRS) can reduce treatment duration but risks compromised dose coverage due to potential rotational errors. Clustering targets into two groups can reduce isocenter-target distances, mitigating the impact of rotational uncertainty. However, a comprehensive evaluation of clustering algorithms for SRS is absent. This study addresses this gap by introducing the SRS Target Clustering Framework (Framework), a comprehensive tool that utilizes commonly used clustering algorithms to generate efficient cluster configurations.. The Framework incorporates four distinct optimization objectives based on two key metrics: the isocenter-target distance and the ratio of this distance to the target radius. Agglomerative and weighted agglomerative clustering are employed for minimax and weighted minimax objectives, respectively. K-means and weighted k-means are utilized for sum-of-squares and weighted sum-of-squares objectives. We applied the Framework to 126 SRS plans, comparing results to ground truth solutions obtained through a brute force algorithm.. For the minimax objective, the average maximum isocenter-target distance from agglomerative clustering (4.8 cm) was slightly higher than the ground truth (4.6 cm). Similarly, the weighted agglomerative clustering achieved an average maximum ratio of 15.1 compared to the ground truth of 14.6. Notably, both k-means and weighted k-means clustering showed close agreement (within a precision of 0.1) with the ground truth for average root-mean-square target-isocenter distance and ratio (3.6 cm and 11.1, respectively).. These results demonstrate the Framework's effectiveness in generating clusters for SRS targets. The proposed approach has the potential to become a valuable tool in SRS treatment planning. Furthermore, this study is the first to investigate clustering algorithms for both minimizing maximum and sum-of-squares uncertainty in SRS.

摘要

. 立体定向放射外科(SRS)的单等中心多靶技术可以缩短治疗时间,但由于潜在的旋转误差,可能会降低剂量覆盖度。将靶区分为两组可以减少等中心与靶区的距离,从而减轻旋转不确定性的影响。然而,目前还缺乏对 SRS 聚类算法的全面评估。本研究通过引入 SRS 靶区聚类框架(Framework)来解决这一差距,这是一个全面的工具,利用常用的聚类算法生成有效的聚类配置。该框架基于两个关键指标包含四个不同的优化目标:等中心与靶区的距离以及该距离与靶区半径的比值。最小最大和加权最小最大目标分别使用凝聚和加权凝聚聚类。平方和和加权平方和目标分别使用 K-均值和加权 K-均值。我们将框架应用于 126 个 SRS 计划,并将结果与通过暴力算法获得的真实解决方案进行比较。对于最小最大目标,凝聚聚类的平均最大等中心与靶区的距离(4.8 厘米)略高于真实值(4.6 厘米)。同样,加权凝聚聚类的平均最大比为 15.1,而真实值为 14.6。值得注意的是,K-均值和加权 K-均值聚类在平均均方根靶区与等中心距离和比值(分别为 3.6 厘米和 11.1)上与真实值非常吻合(精度在 0.1 以内)。这些结果表明,该框架在生成 SRS 靶区的聚类方面非常有效。该方法有可能成为 SRS 治疗计划中的一个有价值的工具。此外,这是第一项研究最小化 SRS 中最大和平方和不确定性的聚类算法的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验