Macocco Iuri, Mira Antonietta, Laio Alessandro
International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
Faculty of Economics, Euler Institute, Università della Svizzera italiana, Via Buffi 13, 6900, Lugano, Switzerland.
Sci Rep. 2024 Aug 1;14(1):17756. doi: 10.1038/s41598-024-68113-3.
Complex networks are powerful mathematical tools for modelling and understanding the behaviour of highly interconnected systems. However, existing methods for analyzing these networks focus on local properties (e.g. degree distribution, clustering coefficient) or global properties (e.g. diameter, modularity) and fail to characterize the network structure across multiple scales. In this paper, we introduce a rigorous method for calculating the intrinsic dimension of unweighted networks. The intrinsic dimension is a feature that describes the network structure at all scales, from local to global. We propose using this measure as a summary statistic within an Approximate Bayesian Computation framework to infer the parameters of flexible and multi-purpose mechanistic models that generate complex networks. Furthermore, we present a new mechanistic model that can reproduce the intrinsic dimension of networks with large diameters, a task that has been challenging for existing models.
复杂网络是用于建模和理解高度互联系统行为的强大数学工具。然而,现有的分析这些网络的方法侧重于局部属性(例如度分布、聚类系数)或全局属性(例如直径、模块性),无法刻画跨多个尺度的网络结构。在本文中,我们引入了一种计算无加权网络固有维度的严格方法。固有维度是一个描述从局部到全局所有尺度网络结构的特征。我们建议在近似贝叶斯计算框架内将此度量用作汇总统计量,以推断生成复杂网络的灵活且通用的机制模型的参数。此外,我们提出了一种新的机制模型,该模型可以再现大直径网络的固有维度,而这一任务对现有模型来说具有挑战性。