Radev Stefan T, Mertens Ulf K, Voss Andreas, Ardizzone Lynton, Kothe Ullrich
IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1452-1466. doi: 10.1109/TNNLS.2020.3042395. Epub 2022 Apr 4.
Estimating the parameters of mathematical models is a common problem in almost all branches of science. However, this problem can prove notably difficult when processes and model descriptions become increasingly complex and an explicit likelihood function is not available. With this work, we propose a novel method for globally amortized Bayesian inference based on invertible neural networks that we call BayesFlow. The method uses simulations to learn a global estimator for the probabilistic mapping from observed data to underlying model parameters. A neural network pretrained in this way can then, without additional training or optimization, infer full posteriors on arbitrarily many real data sets involving the same model family. In addition, our method incorporates a summary network trained to embed the observed data into maximally informative summary statistics. Learning summary statistics from data makes the method applicable to modeling scenarios where standard inference techniques with handcrafted summary statistics fail. We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science, and ecology. We argue that BayesFlow provides a general framework for building amortized Bayesian parameter estimation machines for any forward model from which data can be simulated.
估计数学模型的参数几乎是所有科学分支中的常见问题。然而,当过程和模型描述变得越来越复杂且没有显式的似然函数时,这个问题可能会变得非常困难。在这项工作中,我们提出了一种基于可逆神经网络的全局摊销贝叶斯推理新方法,我们称之为贝叶斯流(BayesFlow)。该方法使用模拟来学习从观测数据到潜在模型参数的概率映射的全局估计器。以这种方式预训练的神经网络随后无需额外的训练或优化,就可以对涉及相同模型族的任意多个真实数据集推断完整的后验分布。此外,我们的方法包含一个汇总网络,该网络经过训练,可将观测数据嵌入到信息量最大的汇总统计量中。从数据中学习汇总统计量使该方法适用于标准推理技术结合手工制作的汇总统计量失败的建模场景。我们展示了贝叶斯流在人口动态、流行病学、认知科学和生态学等具有挑战性的难处理模型上的效用。我们认为,贝叶斯流为构建用于任何可模拟数据的前向模型的摊销贝叶斯参数估计机器提供了一个通用框架。