Suppr超能文献

机械网络模型的灵活模型选择

Flexible model selection for mechanistic network models.

作者信息

Chen Sixing, Mira Antonietta, Onnela Jukka-Pekka

机构信息

Department of Biostatistics, T.H. Chan School of Public Health, Harvard University 655 Huntington Avenue, Building 2, 4th Floor, Boston, MA 02115, USA.

Data Science Lab, Institute of Computational Science, Università della Svizzera italiana Via Buffi 6, 6900 Lugano, Switzerland and Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria Via Valleggio, 11 - 22100 Como, Italy.

出版信息

J Complex Netw. 2020 Apr;8(2):cnz024. doi: 10.1093/comnet/cnz024. Epub 2019 Aug 2.

Abstract

Network models are applied across many domains where data can be represented as a network. Two prominent paradigms for modelling networks are statistical models (probabilistic models for the observed network) and mechanistic models (models for network growth and/or evolution). Mechanistic models are better suited for incorporating domain knowledge, to study effects of interventions (such as changes to specific mechanisms) and to forward simulate, but they typically have intractable likelihoods. As such, and in a stark contrast to statistical models, there is a relative dearth of research on model selection for such models despite the otherwise large body of extant work. In this article, we propose a simulator-based procedure for mechanistic network model selection that borrows aspects from Approximate Bayesian Computation along with a means to quantify the uncertainty in the selected model. To select the most suitable network model, we consider and assess the performance of several learning algorithms, most notably the so-called Super Learner, which makes our framework less sensitive to the choice of a particular learning algorithm. Our approach takes advantage of the ease to forward simulate from mechanistic network models to circumvent their intractable likelihoods. The overall process is flexible and widely applicable. Our simulation results demonstrate the approach's ability to accurately discriminate between competing mechanistic models. Finally, we showcase our approach with a protein-protein interaction network model from the literature for yeast ().

摘要

网络模型应用于许多数据可表示为网络的领域。网络建模的两个突出范例是统计模型(观测网络的概率模型)和机制模型(网络生长和/或演化模型)。机制模型更适合纳入领域知识,以研究干预效果(如特定机制的变化)并进行正向模拟,但它们通常具有难以处理的似然性。因此,与统计模型形成鲜明对比的是,尽管已有大量现存工作,但针对此类模型的模型选择研究相对较少。在本文中,我们提出了一种基于模拟器的机制网络模型选择程序,该程序借鉴了近似贝叶斯计算的一些方面,并提供了一种量化所选模型不确定性的方法。为了选择最合适的网络模型,我们考虑并评估了几种学习算法的性能,最值得注意的是所谓的超级学习器,这使得我们的框架对特定学习算法的选择不太敏感。我们的方法利用了从机制网络模型进行正向模拟的便利性,以规避其难以处理的似然性。整个过程灵活且广泛适用。我们的模拟结果证明了该方法能够准确区分相互竞争的机制模型。最后,我们用文献中酵母的蛋白质 - 蛋白质相互作用网络模型展示了我们的方法。

相似文献

1
Flexible model selection for mechanistic network models.机械网络模型的灵活模型选择
J Complex Netw. 2020 Apr;8(2):cnz024. doi: 10.1093/comnet/cnz024. Epub 2019 Aug 2.
5
Framework for converting mechanistic network models to probabilistic models.将机械网络模型转换为概率模型的框架。
J Complex Netw. 2023 Oct 20;11(5):cnad034. doi: 10.1093/comnet/cnad034. eCollection 2023 Oct.
10
Approximate Bayesian inference in semi-mechanistic models.半机理模型中的近似贝叶斯推断
Stat Comput. 2017;27(4):1003-1040. doi: 10.1007/s11222-016-9668-8. Epub 2016 Jun 16.

引用本文的文献

2
Cost-based feature selection for network model choice.用于网络模型选择的基于成本的特征选择
J Comput Graph Stat. 2023;32(3):1109-1118. doi: 10.1080/10618600.2022.2151453. Epub 2023 Jan 20.
3
Framework for converting mechanistic network models to probabilistic models.将机械网络模型转换为概率模型的框架。
J Complex Netw. 2023 Oct 20;11(5):cnad034. doi: 10.1093/comnet/cnad034. eCollection 2023 Oct.
7
Cumulative effects of triadic closure and homophily in social networks.社会网络中三元闭包和同质性的累积效应。
Sci Adv. 2020 May 8;6(19):eaax7310. doi: 10.1126/sciadv.aax7310. eCollection 2020 May.

本文引用的文献

2
Reliable ABC model choice via random forests.基于随机森林的可靠 ABC 模型选择。
Bioinformatics. 2016 Mar 15;32(6):859-66. doi: 10.1093/bioinformatics/btv684. Epub 2015 Nov 20.
7
Sampling Networks from Their Posterior Predictive Distribution.从其后验预测分布中采样网络。
Netw Sci (Camb Univ Press). 2014 Apr 1;2(1):107-131. doi: 10.1017/nws.2014.2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验