Suppr超能文献

深度学习合成对比增强腹部 CT 在非增强 CT 扫描患者中的临床可行性。

Clinical feasibility of deep learning based synthetic contrast enhanced abdominal CT in patients undergoing non enhanced CT scans.

机构信息

Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 31;14(1):17635. doi: 10.1038/s41598-024-68705-z.

Abstract

Our objective was to develop and evaluate the clinical feasibility of deep-learning-based synthetic contrast-enhanced computed tomography (DL-SynCCT) in patients designated for nonenhanced CT (NECT). We proposed a weakly supervised learning with the utilization of virtual non-contrast CT (VNC) for the development of DL-SynCCT. Training and internal validations were performed with 2202 pairs of retrospectively collected contrast-enhanced CT (CECT) images with the corresponding VNC images acquired from dual-energy CT. Clinical validation was performed using an external validation set including 398 patients designated for true nonenhanced CT (NECT), from multiple vendors at three institutes. Detection of lesions was performed by three radiologists with only NECT in the first session and an additionally provided DL-SynCCT in the second session. The mean peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) of the DL-SynCCT compared to CECT were 43.25 ± 0.41 and 0.92 ± 0.01, respectively. With DL-SynCCT, the pooled sensitivity for lesion detection (72.0% to 76.4%, P < 0.001) and level of diagnostic confidence (3.0 to 3.6, P < 0.001) significantly increased. In conclusion, DL-SynCCT generated by weakly supervised learning showed significant benefit in terms of sensitivity in detecting abnormal findings when added to NECT in patients designated for nonenhanced CT scans.

摘要

我们的目标是开发并评估基于深度学习的合成对比增强 CT(DL-SynCCT)在指定行非增强 CT(NECT)的患者中的临床可行性。我们提出了一种弱监督学习方法,利用虚拟非对比 CT(VNC)来开发 DL-SynCCT。训练和内部验证使用了 2202 对回顾性采集的对比增强 CT(CECT)图像和双能 CT 采集的相应虚拟非对比 CT(VNC)图像进行。临床验证使用了来自三个机构的三个供应商的 398 名指定行真非增强 CT(NECT)患者的外部验证集进行。三位放射科医生仅在第一次检查中使用 NECT,在第二次检查中使用额外提供的 DL-SynCCT 进行病变检测。与 CECT 相比,DL-SynCCT 的平均峰值信噪比(PSNR)和结构相似性指数图(SSIM)分别为 43.25±0.41 和 0.92±0.01。使用 DL-SynCCT,病变检测的 pooled 敏感度(72.0%到 76.4%,P<0.001)和诊断信心水平(3.0 到 3.6,P<0.001)显著提高。总之,在指定行非增强 CT 扫描的患者中,添加到 NECT 后,基于弱监督学习生成的 DL-SynCCT 在检测异常发现的敏感度方面具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a363/11291756/d9da6db95a81/41598_2024_68705_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验