Suppr超能文献

基于深度学习的动态对比增强腹部 CT 图像重建:重建强度水平的图像质量和病灶检测。

Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels.

机构信息

Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.

Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.

出版信息

Clin Radiol. 2021 Sep;76(9):710.e15-710.e24. doi: 10.1016/j.crad.2021.03.010. Epub 2021 Apr 18.

Abstract

AIM

To evaluate the use of deep-learning-based image reconstruction (DLIR) algorithms in dynamic contrast-enhanced computed tomography (CT) of the abdomen, and to compare the image quality and lesion conspicuity among the reconstruction strength levels.

MATERIALS AND METHODS

This prospective study included 59 patients with 373 hepatic lesions who underwent dynamic contrast-enhanced CT of the abdomen. All images were reconstructed using four reconstruction algorithms, including 40% adaptive statistical iterative reconstruction-Veo (ASiR-V) and DLIR at low, medium, and high-strength levels (DLIR-L, DLIR-M, and DLIR-H, respectively). The signal-to-noise ratio (SNR) of the abdominal aorta, portal vein, liver, pancreas, and spleen and the lesion-to-liver contrast-to-noise ratio (CNR) were calculated and compared among the four reconstruction algorithms. The diagnostic acceptability was qualitatively assessed and compared among the four reconstruction algorithms and the conspicuity of hepatic lesions was compared between <5 and ≥5 mm lesions.

RESULTS

The SNR of each anatomical structure (p<0.0001) and CNR (p<0.0001) were significantly higher in DLIR-H than the other reconstruction algorithms. Diagnostic acceptability was significantly better in DLIR-M than the other reconstruction algorithms (p<0.0001). The conspicuity of hepatic lesions was highest when using 40% ASiR-V and tended to lessen as the reconstruction strength level was getting higher in DLIR, especially in <5 mm lesions; however, all hepatic lesions could be detected.

CONCLUSIONS

DLIR improved the SNR, CNR, and image quality compared with 40% ASiR-V, while making it possible to decrease lesion conspicuity using higher reconstruction strength.

摘要

目的

评估基于深度学习的图像重建(DLIR)算法在腹部动态对比增强 CT 中的应用,并比较不同重建强度水平的图像质量和病灶显示度。

材料与方法

本前瞻性研究纳入了 59 例 373 个肝脏病灶的患者,这些患者均接受了腹部动态对比增强 CT 检查。所有图像均采用 4 种重建算法进行重建,包括 40%自适应统计迭代重建-Veo(ASiR-V)和低、中、高强度的 DLIR(DLIR-L、DLIR-M 和 DLIR-H)。计算并比较了 4 种重建算法下腹主动脉、门静脉、肝脏、胰腺和脾脏的信噪比(SNR)以及病灶与肝脏的对比噪声比(CNR)。对 4 种重建算法的诊断可接受性进行了定性评估,并比较了它们之间的差异,还比较了<5 和≥5mm 病灶之间肝脏病灶的显示度。

结果

DLIR-H 组的各解剖结构的 SNR(p<0.0001)和 CNR(p<0.0001)均显著高于其他重建算法。DLIR-M 组的诊断可接受性明显优于其他重建算法(p<0.0001)。使用 40% ASiR-V 时肝脏病灶的显示度最高,随着 DLIR 重建强度的增加,其显示度趋于降低,尤其是<5mm 的病灶,但所有肝脏病灶均可检测到。

结论

与 40% ASiR-V 相比,DLIR 提高了 SNR、CNR 和图像质量,但使用更高的重建强度可以降低病灶的显示度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验