Department of Materials, University of Oxford, Oxford, UK.
Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Nature. 2024 Aug;632(8023):55-62. doi: 10.1038/s41586-024-07590-y. Epub 2024 Jul 31.
Advancements in optical coherence control have unlocked many cutting-edge applications, including long-haul communication, light detection and ranging (LiDAR) and optical coherence tomography. Prevailing wisdom suggests that using more coherent light sources leads to enhanced system performance and device functionalities. Our study introduces a photonic convolutional processing system that takes advantage of partially coherent light to boost computing parallelism without substantially sacrificing accuracy, potentially enabling larger-size photonic tensor cores. The reduction of the degree of coherence optimizes bandwidth use in the photonic convolutional processing system. This breakthrough challenges the traditional belief that coherence is essential or even advantageous in integrated photonic accelerators, thereby enabling the use of light sources with less rigorous feedback control and thermal-management requirements for high-throughput photonic computing. Here we demonstrate such a system in two photonic platforms for computing applications: a photonic tensor core using phase-change-material photonic memories that delivers parallel convolution operations to classify the gaits of ten patients with Parkinson's disease with 92.2% accuracy (92.7% theoretically) and a silicon photonic tensor core with embedded electro-absorption modulators (EAMs) to facilitate 0.108 tera operations per second (TOPS) convolutional processing for classifying the Modified National Institute of Standards and Technology (MNIST) handwritten digits dataset with 92.4% accuracy (95.0% theoretically).
光学相干控制的进步已经解锁了许多前沿应用,包括远程通信、光探测和测距(LiDAR)和光学相干断层扫描。主流观点认为,使用更相干的光源可以提高系统性能和设备功能。我们的研究介绍了一种光子卷积处理系统,该系统利用部分相干光来提高计算并行度,而不会显著牺牲准确性,从而有可能实现更大尺寸的光子张量核。相干度的降低优化了光子卷积处理系统的带宽利用。这一突破挑战了传统观念,即相干性对于集成光子加速器是必不可少的,甚至是有利的,从而可以使用具有更少严格反馈控制和热管理要求的光源来实现高吞吐量的光子计算。在这里,我们在两个用于计算应用的光子平台上展示了这样一个系统:一个使用相变材料光子存储器的光子张量核,它可以实现并行卷积操作,以 92.2%(理论上为 92.7%)的准确率对 10 名帕金森病患者的步态进行分类;一个具有嵌入式电吸收调制器(EAM)的硅光子张量核,可以实现每秒 0.108 万亿次(TOPS)的卷积处理,以 92.4%的准确率(理论上为 95.0%)对修改后的国家标准与技术研究所(MNIST)手写数字数据集进行分类。