Yan Tao, Yang Rui, Zheng Ziyang, Lin Xing, Xiong Hongkai, Dai Qionghai
Department of Automation, Tsinghua University, Beijing 100084, China.
Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
Sci Adv. 2022 Jun 17;8(24):eabn7630. doi: 10.1126/sciadv.abn7630. Epub 2022 Jun 15.
Photonic neural networks perform brain-inspired computations using photons instead of electrons to achieve substantially improved computing performance. However, existing architectures can only handle data with regular structures but fail to generalize to graph-structured data beyond Euclidean space. Here, we propose the diffractive graph neural network (DGNN), an all-optical graph representation learning architecture based on the diffractive photonic computing units (DPUs) and on-chip optical devices to address this limitation. Specifically, the graph node attributes are encoded into strip optical waveguides, transformed by DPUs, and aggregated by optical couplers to extract their feature representations. DGNN captures complex dependencies among node neighborhoods during the light-speed optical message passing over graph structures. We demonstrate the applications of DGNN for node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency processing large-scale graph data structures using deep learning.
光子神经网络利用光子而非电子进行受大脑启发的计算,以实现显著提升的计算性能。然而,现有的架构仅能处理具有规则结构的数据,无法推广到欧几里得空间之外的图结构数据。在此,我们提出了衍射图神经网络(DGNN),这是一种基于衍射光子计算单元(DPU)和片上光学器件的全光图表示学习架构,以解决这一局限性。具体而言,图节点属性被编码到带状光波导中,由DPU进行变换,并通过光耦合器进行聚合,以提取其特征表示。DGNN在光通过图结构进行光速光学消息传递期间捕获节点邻域之间的复杂依赖关系。我们通过基准数据库展示了DGNN在节点和图级分类任务中的应用,并取得了优异的性能。我们的工作为设计专用集成光子电路开辟了一个新方向,以便使用深度学习高效处理大规模图数据结构。