Suppr超能文献

描述和验证一种新的人工智能工具 LabelComp,用于识别 FDA 标签中不良事件变化。

Description and Validation of a Novel AI Tool, LabelComp, for the Identification of Adverse Event Changes in FDA Labeling.

机构信息

Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, MD, USA.

Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA), Jefferson, AR, USA.

出版信息

Drug Saf. 2024 Dec;47(12):1265-1274. doi: 10.1007/s40264-024-01468-8. Epub 2024 Jul 31.

Abstract

INTRODUCTION

The accurate identification and timely updating of adverse reactions in drug labeling are crucial for patient safety and effective drug use. Postmarketing surveillance plays a pivotal role in identifying previously undetected adverse events (AEs) that emerge when a drug is used in broader and more diverse patient populations. However, traditional methods of updating drug labeling with new AE information have been manual, time consuming, and error prone. This paper introduces the LabelComp tool, an innovative artificial intelligence (AI) tool designed to enhance the efficiency and accuracy of postmarketing drug safety surveillance. Utilizing a combination of text analytics and a trained Bidirectional Encoder Representations from Transformers (BERT) model, the LabelComp tool automatically identifies changes in AE terms from updated drug labeling documents.

OBJECTIVE

Our objective was to create and validate an AI tool with high accuracy that could enable researchers and FDA reviewers to efficiently identify safety-related drug labeling changes.

RESULTS

Our validation study of 87 drug labeling PDF pairs demonstrates the tool's high accuracy, with F1 scores of overall performance ranging from 0.795 to 0.936 across different evaluation tiers and a recall of at least 0.997 with only one missed AE out of 483 total AEs detected, indicating the tool's efficacy in identifying new AEs.

CONCLUSION

The LabelComp tool can support drug safety surveillance and inform regulatory decision-making. The publication of this tool also aims to encourage further community-driven enhancements, aligning with broader interests in applying AI to advance regulatory science and public health.

摘要

简介

准确识别和及时更新药品标签中的不良反应对于患者安全和有效用药至关重要。上市后监测在识别药物在更广泛和更多样化的患者群体中使用时出现的先前未检测到的不良事件(AE)方面发挥着关键作用。然而,用新的 AE 信息更新药品标签的传统方法既手动又耗时,且容易出错。本文介绍了 LabelComp 工具,这是一种创新的人工智能(AI)工具,旨在提高上市后药物安全性监测的效率和准确性。该工具利用文本分析和经过训练的双向编码器表示从变压器(BERT)模型的组合,自动从更新的药品标签文档中识别 AE 术语的变化。

目的

我们的目标是创建和验证一个具有高精度的 AI 工具,使研究人员和 FDA 审查员能够高效地识别与安全相关的药品标签变化。

结果

我们对 87 对药物标签 PDF 的验证研究表明,该工具具有很高的准确性,在不同评估层次上的总体性能 F1 分数范围为 0.795 至 0.936,在总共检测到的 483 个 AE 中,只有一个 AE 被遗漏,召回率至少为 0.997,表明该工具在识别新的 AE 方面的有效性。

结论

LabelComp 工具可以支持药物安全性监测并为监管决策提供信息。该工具的发布还旨在鼓励进一步的社区驱动增强,符合将 AI 应用于推进监管科学和公共卫生的更广泛利益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b3/11554693/28aa70012dc7/40264_2024_1468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验