Suppr超能文献

ADE 评估:药物标签中药物警戒用不良事件提取的文本处理系统评估。

ADE Eval: An Evaluation of Text Processing Systems for Adverse Event Extraction from Drug Labels for Pharmacovigilance.

机构信息

The MITRE Corporation, 202 Burlington Rd, Bedford, MA, 01730, USA.

Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.

出版信息

Drug Saf. 2021 Jan;44(1):83-94. doi: 10.1007/s40264-020-00996-3. Epub 2020 Oct 2.

Abstract

INTRODUCTION

The US FDA is interested in a tool that would enable pharmacovigilance safety evaluators to automate the identification of adverse drug events (ADEs) mentioned in FDA prescribing information. The MITRE Corporation (MITRE) and the FDA organized a shared task-Adverse Drug Event Evaluation (ADE Eval)-to determine whether the performance of algorithms currently used for natural language processing (NLP) might be good enough for real-world use.

OBJECTIVE

ADE Eval was conducted to evaluate a range of NLP techniques for identifying ADEs mentioned in publicly available FDA-approved drug labels (package inserts). It was designed specifically to reflect pharmacovigilance practices within the FDA and model possible pharmacovigilance use cases.

METHODS

Pharmacovigilance-specific annotation guidelines and annotated corpora were created. Two metrics modeled the experiences of FDA safety evaluators: one measured the ability of an algorithm to identify correct Medical Dictionary for Regulatory Activities (MedDRA) terms for the text from the annotated corpora, and the other assessed the quality of evidence extracted from the corpora to support the selected MedDRA term by measuring the portion of annotated text an algorithm correctly identified. A third metric assessed the cost of correcting system output for subsequent training (averaged, weighted F1-measure for mention finding).

RESULTS

In total, 13 teams submitted 23 runs: the top MedDRA coding F1-measure was 0.79, the top quality score was 0.96, and the top mention-finding F1-measure was 0.89.

CONCLUSION

While NLP techniques do not perform at levels that would allow them to be used without intervention, it is now worthwhile exploring making NLP outputs available in human pharmacovigilance workflows.

摘要

简介

美国食品药品监督管理局(FDA)对一种工具感兴趣,该工具可使药物警戒安全评估员能够自动识别 FDA 处方信息中提到的不良药物事件(ADE)。米特公司(MITRE)和 FDA 组织了一项名为“不良药物事件评估(ADE Eval)”的共享任务,以确定当前用于自然语言处理(NLP)的算法的性能是否足以满足实际应用。

目的

ADE Eval 旨在评估一系列用于识别公开可用的 FDA 批准药物标签(包装说明书)中提到的 ADE 的 NLP 技术。它专门用于反映 FDA 内的药物警戒实践,并模拟可能的药物警戒用例。

方法

创建了特定于药物警戒的注释指南和注释语料库。两项指标模拟了 FDA 安全评估员的经验:一项衡量算法识别注释语料库中正确的监管活动医学词典(MedDRA)术语的能力,另一项评估从语料库中提取证据的质量,以衡量算法正确识别的注释文本的比例,以支持所选的 MedDRA 术语。第三项指标评估了纠正系统输出以进行后续培训的成本(平均、加权提及发现 F1 度量)。

结果

共有 13 个团队提交了 23 次运行:最高的 MedDRA 编码 F1 度量为 0.79,最高的质量分数为 0.96,最高的提及发现 F1 度量为 0.89。

结论

虽然 NLP 技术的性能还不能达到无需干预即可使用的水平,但现在值得探索在人类药物警戒工作流程中提供 NLP 输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b30f/7813736/1cf764739176/40264_2020_996_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验