Invitae Corporation, San Francisco, CA, 94103, USA.
Epic Bio, South San Francisco, CA, 94080, USA.
Hum Genet. 2024 Aug;143(8):995-1004. doi: 10.1007/s00439-024-02691-0. Epub 2024 Aug 1.
As the adoption and scope of genetic testing continue to expand, interpreting the clinical significance of DNA sequence variants at scale remains a formidable challenge, with a high proportion classified as variants of uncertain significance (VUSs). Genetic testing laboratories have historically relied, in part, on functional data from academic literature to support variant classification. High-throughput functional assays or multiplex assays of variant effect (MAVEs), designed to assess the effects of DNA variants on protein stability and function, represent an important and increasingly available source of evidence for variant classification, but their potential is just beginning to be realized in clinical lab settings. Here, we describe a framework for generating, validating and incorporating data from MAVEs into a semi-quantitative variant classification method applied to clinical genetic testing. Using single-cell gene expression measurements, cellular evidence models were built to assess the effects of DNA variation in 44 genes of clinical interest. This framework was also applied to models for an additional 22 genes with previously published MAVE datasets. In total, modeling data was incorporated from 24 genes into our variant classification method. These data contributed evidence for classifying 4043 observed variants in over 57,000 individuals. Genetic testing laboratories are uniquely positioned to generate, analyze, validate, and incorporate evidence from high-throughput functional data and ultimately enable the use of these data to provide definitive clinical variant classifications for more patients.
随着基因检测的采用和范围不断扩大,大规模解释 DNA 序列变异的临床意义仍然是一个艰巨的挑战,其中很大一部分被归类为意义不明的变异(VUS)。遗传检测实验室历史上部分依赖学术文献中的功能数据来支持变异分类。旨在评估 DNA 变异对蛋白质稳定性和功能影响的高通量功能测定或变异效应多重分析(MAVE),是用于变异分类的一个重要且越来越多的证据来源,但它们在临床实验室环境中的潜力才刚刚开始显现。在这里,我们描述了一种生成、验证和将 MAVE 数据纳入应用于临床基因检测的半定量变异分类方法的数据的框架。使用单细胞基因表达测量,构建了细胞证据模型来评估 44 个临床相关基因中 DNA 变异的影响。该框架还应用于具有先前发表的 MAVE 数据集的另外 22 个基因的模型。总共,我们将 24 个基因的建模数据纳入到我们的变异分类方法中。这些数据为在超过 57000 个人中的 4043 个观察到的变异提供了分类证据。遗传检测实验室具有独特的优势,可以生成、分析、验证和整合来自高通量功能数据的证据,并最终使这些数据能够为更多患者提供明确的临床变异分类。