Suppr超能文献

甲虫的被动翅膀展开和收起以及扑翼微型机器人。

Passive wing deployment and retraction in beetles and flapping microrobots.

机构信息

School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Department of Smart Vehicle Engineering, Konkuk University, Seoul, South Korea.

出版信息

Nature. 2024 Aug;632(8027):1067-1072. doi: 10.1038/s41586-024-07755-9. Epub 2024 Jul 31.

Abstract

Birds, bats and many insects can tuck their wings against their bodies when at rest and deploy them to power flight. Whereas birds and bats use well-developed pectoral and wing muscles, how insects control their wing deployment and retraction remains unclear because this varies among insect species. Beetles (Coleoptera) display one of the most complex mechanisms. In rhinoceros beetles, Allomyrina dichotoma, wing deployment is initiated by complete release of the elytra and partial release of the hindwings at their bases. Subsequently, the beetle starts flapping, elevates the hindwing bases and unfolds the hindwing tips in an origami-like fashion. Although the origami-like fold has been extensively explored, limited attention has been given to the hindwing base movements, which are believed to be driven by the thoracic muscles. Here we demonstrate that rhinoceros beetles can effortlessly deploy their hindwings without necessitating muscular activity. We show that opening the elytra triggers a spring-like partial release of the hindwings from the body, allowing the clearance needed for the subsequent flapping motion that brings the hindwings into the flight position. After flight, the beetle can use the elytra to push the hindwings back into the resting position, further strengthening the hypothesis of passive deployment. We validated the hypothesis using a flapping microrobot that passively deployed its wings for stable, controlled flight and retracted them neatly upon landing, demonstrating a simple, yet effective, approach to the design of insect-like flying micromachines.

摘要

鸟类、蝙蝠和许多昆虫在休息时可以将翅膀收回到身体两侧,然后展开翅膀进行飞行。鸟类和蝙蝠利用高度发达的胸肌和翅膀肌肉来控制翅膀的展开和收起,而昆虫如何控制翅膀的展开和收起尚不清楚,因为这在不同的昆虫物种中有所不同。甲虫(鞘翅目)展示了最复杂的机制之一。在独角仙 Allomyrina dichotoma 中,翅膀的展开是通过完全释放鞘翅和部分释放后翅基部开始的。随后,甲虫开始拍打翅膀,抬起后翅基部,并以折纸的方式展开后翅尖端。尽管折纸般的折叠已经被广泛探索,但对后翅基部的运动关注较少,人们认为这些运动是由胸肌驱动的。在这里,我们证明了独角仙可以毫不费力地展开它们的后翅,而不需要肌肉活动。我们表明,打开鞘翅会触发后翅从身体上的弹簧状部分释放,为随后的拍打运动提供所需的间隙,使后翅进入飞行位置。飞行后,甲虫可以使用鞘翅将后翅推回到休息位置,进一步加强了被动部署的假设。我们使用一个拍打微型机器人验证了这个假设,该机器人可以被动地展开翅膀进行稳定、可控的飞行,并在着陆时整齐地收回翅膀,展示了一种简单而有效的设计昆虫样飞行微型机器的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验