Department of Biomedical Engineering, Tsinghua University, Beijing, P.R. China.
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Med Phys. 2022 Feb;49(2):1000-1014. doi: 10.1002/mp.15427. Epub 2022 Jan 10.
The goal of this study is to leverage an advanced fast imaging technique, wave-controlled aliasing in parallel imaging (Wave-CAIPI), and a generative adversarial network (GAN) for denoising to achieve accelerated high-quality high-signal-to-noise-ratio (SNR) volumetric magnetic resonance imaging (MRI).
Three-dimensional (3D) T -weighted fluid-attenuated inversion recovery (FLAIR) image data were acquired on 33 multiple sclerosis (MS) patients using a prototype Wave-CAIPI sequence (acceleration factor R = 3 × 2, 2.75 min) and a standard T -sampling perfection with application-optimized contrasts by using flip angle evolution (SPACE) FLAIR sequence (R = 2, 7.25 min). A hybrid denoising GAN entitled "HDnGAN" consisting of a 3D generator and a 2D discriminator was proposed to denoise highly accelerated Wave-CAIPI images. HDnGAN benefits from the improved image synthesis performance provided by the 3D generator and increased training samples from a limited number of patients for training the 2D discriminator. HDnGAN was trained and validated on data from 25 MS patients with the standard FLAIR images as the target and evaluated on data from eight MS patients not seen during training. HDnGAN was compared to other denoising methods including adaptive optimized nonlocal means (AONLM), block matching with 4D filtering (BM4D), modified U-Net (MU-Net), and 3D GAN in qualitative and quantitative analysis of output images using the mean squared error (MSE) and Visual Geometry Group (VGG) perceptual loss compared to standard FLAIR images, and a reader assessment by two neuroradiologists regarding sharpness, SNR, lesion conspicuity, and overall quality. Finally, the performance of these denoising methods was compared at higher noise levels using simulated data with added Rician noise.
HDnGAN effectively denoised low-SNR Wave-CAIPI images with sharpness and rich textural details, which could be adjusted by controlling the contribution of the adversarial loss to the total loss when training the generator. Quantitatively, HDnGAN (λ = 10 ) achieved low MSE and the lowest VGG perceptual loss. The reader study showed that HDnGAN (λ = 10 ) significantly improved the SNR of Wave-CAIPI images (p < 0.001), outperformed AONLM (p = 0.015), BM4D (p < 0.001), MU-Net (p < 0.001), and 3D GAN (λ = 10 ) (p < 0.001) regarding image sharpness, and outperformed MU-Net (p < 0.001) and 3D GAN (λ = 10 ) (p = 0.001) regarding lesion conspicuity. The overall quality score of HDnGAN (λ = 10 ) (4.25 ± 0.43) was significantly higher than those from Wave-CAIPI (3.69 ± 0.46, p = 0.003), BM4D (3.50 ± 0.71, p = 0.001), MU-Net (3.25 ± 0.75, p < 0.001), and 3D GAN (λ = 10 ) (3.50 ± 0.50, p < 0.001), with no significant difference compared to standard FLAIR images (4.38 ± 0.48, p = 0.333). The advantages of HDnGAN over other methods were more obvious at higher noise levels.
HDnGAN provides robust and feasible denoising while preserving rich textural detail in empirical volumetric MRI data. Our study using empirical patient data and systematic evaluation supports the use of HDnGAN in combination with modern fast imaging techniques such as Wave-CAIPI to achieve high-fidelity fast volumetric MRI and represents an important step to the clinical translation of GANs.
本研究旨在利用先进的快速成像技术,波控并行成像中的混叠消除(Wave-CAIPI)和生成对抗网络(GAN)进行去噪,以实现加速的高质量高信噪比(SNR)容积磁共振成像(MRI)。
对 33 名多发性硬化症(MS)患者进行三维(3D)T1 加权液体衰减反转恢复(FLAIR)图像数据采集,使用原型 Wave-CAIPI 序列(加速因子 R=3×2,2.75 分钟)和标准 T 采样完善,应用优化对比度通过使用翻转角演化(SPACE)FLAIR 序列(R=2,7.25 分钟)。提出了一种混合去噪 GAN,称为“HDnGAN”,由一个 3D 生成器和一个 2D 鉴别器组成,用于对高度加速的 Wave-CAIPI 图像进行去噪。HDnGAN 受益于 3D 生成器提供的改进的图像合成性能,以及从有限数量的患者中获得的更多训练样本,用于训练 2D 鉴别器。HDnGAN 在来自 25 名 MS 患者的标准 FLAIR 图像数据上进行训练和验证,并在来自 8 名未在训练中见到的 MS 患者的数据上进行评估。HDnGAN 在定性和定量分析输出图像方面与其他去噪方法(包括自适应优化非局部均值(AONLM)、4D 滤波的块匹配(BM4D)、修改的 U-Net(MU-Net)和 3D GAN)进行比较,比较方法是使用均方误差(MSE)和视觉几何组(VGG)感知损失与标准 FLAIR 图像进行比较,以及两位神经放射学家对清晰度、SNR、病变显著性和整体质量的评估。最后,使用添加瑞利噪声的模拟数据比较这些去噪方法在更高噪声水平下的性能。
HDnGAN 有效地对低 SNR Wave-CAIPI 图像进行去噪,具有清晰的锐利度和丰富的纹理细节,这可以通过在训练生成器时控制对抗性损失对总损失的贡献来进行调整。在定量方面,HDnGAN(λ=10)实现了低 MSE 和最低的 VGG 感知损失。读者研究表明,HDnGAN(λ=10)显著提高了 Wave-CAIPI 图像的 SNR(p<0.001),优于 AONLM(p=0.015)、BM4D(p<0.001)、MU-Net(p<0.001)和 3D GAN(λ=10)(p<0.001)在图像清晰度方面,优于 MU-Net(p<0.001)和 3D GAN(λ=10)(p=0.001)在病变显著性方面。HDnGAN(λ=10)的整体质量评分(4.25±0.43)明显高于 Wave-CAIPI(3.69±0.46,p=0.003)、BM4D(3.50±0.71,p=0.001)、MU-Net(3.25±0.75,p<0.001)和 3D GAN(λ=10)(3.50±0.50,p<0.001),与标准 FLAIR 图像无显著差异(4.38±0.48,p=0.333)。HDnGAN 相对于其他方法的优势在更高的噪声水平下更为明显。
HDnGAN 在保留丰富纹理细节的同时,为经验性容积 MRI 数据提供了稳健且可行的去噪。我们使用经验性患者数据和系统评估进行的研究支持在现代快速成像技术(如 Wave-CAIPI)中结合使用 HDnGAN,以实现高保真度的快速容积 MRI,并代表 GAN 向临床转化的重要一步。