Suppr超能文献

基于生成对抗网络的磁共振图像超分辨率重建。

Super-resolution of magnetic resonance images using Generative Adversarial Networks.

机构信息

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

出版信息

Comput Med Imaging Graph. 2023 Sep;108:102280. doi: 10.1016/j.compmedimag.2023.102280. Epub 2023 Jul 31.

Abstract

Magnetic Resonance Imaging (MRI) typically comes at the cost of small spatial coverage, high expenses and long scan times. Accelerating MRI acquisition by taking less measurements yields the potential to relax these inherent forfeits. Recent breakthroughs in the field of Machine Learning have shown high-resolution (HR) images could be recovered from low-resolution (LR) signals via super-resolution (SR). In particular, a novel class of neural networks named Generative Adversarial Networks (GAN) has manifested an alternative way of conceiving models capable of generating data. GANs can learn to infer details based on some prior information, subsequently recovering missing data. Accordingly, they manifest huge potential in MRI reconstruction and acceleration tasks. This paper conducts a review on GAN-based SR methods, exhibiting the immersive ability of GANs on upscaling MRIs by a scale factor of ×4 while at the same time maintaining trustworthy and high-frequency details. Despite quantitative results suggesting SRResCycGAN outperforms other popular deep learning methods in recovering ×4 downgraded images, qualitative results show Beby-GAN holds the best perceptual quality and proves GAN-based methods hold the capacity to reduce medical costs, distress patients and even enable new MRI applications where it is currently too slow or expensive.

摘要

磁共振成像(MRI)通常具有空间覆盖范围小、费用高和扫描时间长的缺点。通过减少测量次数来加速 MRI 采集,有潜力缓解这些固有损失。机器学习领域的最新突破表明,通过超分辨率(SR)可以从低分辨率(LR)信号中恢复高分辨率(HR)图像。特别是,一类名为生成对抗网络(GAN)的新型神经网络为能够生成数据的模型提供了一种新的设计思路。GAN 可以学习根据某些先验信息推断细节,从而恢复丢失的数据。因此,它们在 MRI 重建和加速任务中具有巨大的潜力。本文对基于 GAN 的 SR 方法进行了综述,展示了 GAN 在将 MRI 放大 4 倍的同时,保持可靠和高频细节的强大能力。尽管定量结果表明,SRResCycGAN 在恢复 4 倍降级图像方面优于其他流行的深度学习方法,但定性结果表明,Beby-GAN 具有最佳的感知质量,并证明基于 GAN 的方法具有降低医疗成本、减轻患者痛苦的能力,甚至可以实现新的 MRI 应用,目前这些应用要么速度太慢,要么成本太高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验