Suppr超能文献

通过计算机视频分析实现婴儿运动模式的新型分类

Towards novel classification of infants' movement patterns supported by computerized video analysis.

作者信息

Doroniewicz Iwona, Ledwoń Daniel J, Bugdol Monika, Kieszczyńska Katarzyna, Affanasowicz Alicja, Latos Dominika, Matyja Małgorzata, Myśliwiec Andrzej

机构信息

Institute of Physiotherapy and Health Science, Academy of Physical Education in Katowice, Katowice, Poland.

Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland.

出版信息

J Neuroeng Rehabil. 2024 Jul 31;21(1):129. doi: 10.1186/s12984-024-01429-3.

Abstract

BACKGROUND

Positional preferences, asymmetry of body position and movements potentially indicate abnormal clinical conditions in infants. However, a lack of standardized nomenclature hinders accurate assessment and documentation of these preferences over time. Video tools offer a safe and reproducible method to analyze and describe infant movement patterns, aiding in physiotherapy management and goal planning. The study aimed to develop an objective classification system for infant movement patterns with particular emphasis on the specific distribution of muscle tension, using methods of computer analysis of video recordings to enhance accuracy and reproducibility in assessments.

METHODS

The study involved the recording of videos of 51 infants between 6 and 15 weeks of age, born at term, with an Apgar score of at least 8 points. Based on observations of a recording of infant spontaneous movements in the supine position, experts identified postural-motor patterns: symmetry and typical asymmetry linked to the asymmetrical tonic neck reflex. Deviations from the typical postural-motor system were indicated, and subcategories of atypical patterns were distinguished. A computer-based inference system was developed to automatically classify individual patterns.

RESULTS

The following division of motor patterns was used: (1) normal patterns, including (a) typical (symmetrical, asymmetrical: variants 1 and 2); and (b) atypical (variants: 1 to 4), (2) positional preference, and (3) abnormal patterns. The proposed automatic classification method achieved an expert decision mapping accuracy of 84%. For atypical patterns, the high reproducibility of the system's results was confirmed. Lower reproducibility, not exceeding 70%, was achieved with typical patterns.

CONCLUSIONS

Based on the observation of infant spontaneous movements, it is possible to identify movement patterns divided into typical and atypical patterns. Computer-based analysis of infant movement patterns makes it possible to objectify and satisfactorily reproduce diagnostic decisions.

摘要

背景

姿势偏好、身体姿势和运动的不对称性可能表明婴儿存在异常临床状况。然而,缺乏标准化的命名法阻碍了对这些偏好随时间的准确评估和记录。视频工具提供了一种安全且可重复的方法来分析和描述婴儿的运动模式,有助于物理治疗管理和目标规划。本研究旨在开发一种针对婴儿运动模式的客观分类系统,特别强调肌肉张力的特定分布,采用视频记录的计算机分析方法以提高评估的准确性和可重复性。

方法

该研究涉及记录51名足月出生、阿氏评分至少为8分、年龄在6至15周之间的婴儿的视频。基于对婴儿仰卧位自发运动记录的观察,专家们确定了姿势 - 运动模式:与非对称紧张性颈反射相关的对称和典型不对称。指出了与典型姿势 - 运动系统的偏差,并区分了非典型模式的子类别。开发了一个基于计算机的推理系统来自动分类个体模式。

结果

采用了以下运动模式划分:(1)正常模式,包括(a)典型(对称、不对称:变体1和2);和(b)非典型(变体:1至4),(2)姿势偏好,以及(3)异常模式。所提出的自动分类方法实现了84%的专家决策映射准确率。对于非典型模式,系统结果的高可重复性得到了证实。典型模式的可重复性较低,不超过70%。

结论

基于对婴儿自发运动的观察,可以识别出分为典型和非典型模式的运动模式。基于计算机的婴儿运动模式分析使得诊断决策能够客观化并令人满意地重复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fb0/11290138/102867a20f1e/12984_2024_1429_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验