Suppr超能文献

基于数据驱动的人群水平脑电图特征检索及其在神经退行性疾病中的作用。

Data-driven retrieval of population-level EEG features and their role in neurodegenerative diseases.

作者信息

Li Wentao, Varatharajah Yogatheesan, Dicks Ellen, Barnard Leland, Brinkmann Benjamin H, Crepeau Daniel, Worrell Gregory, Fan Winnie, Kremers Walter, Boeve Bradley, Botha Hugo, Gogineni Venkatsampath, Jones David T

机构信息

Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.

Department of Neurology, Kaiser Permanente Northern California, Sacramento, CA 95758, USA.

出版信息

Brain Commun. 2024 Jul 31;6(4):fcae227. doi: 10.1093/braincomms/fcae227. eCollection 2024.

Abstract

Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer's disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10-20 scalp EEG studies. From these raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimensional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) due to Alzheimer's disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associations between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF Alzheimer's Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the Curve (AUC) 0.59-0.91) and Alzheimer's disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer's subgroup. This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and differentiating between different neurodegenerative causes of cognitive impairment.

摘要

阿尔茨海默病和路易体病等神经退行性疾病引起的电生理紊乱可通过头皮脑电图检测到,并且可作为疾病严重程度的功能指标。传统的脑电图定量分析方法通常需要事先选择具有临床意义的脑电图特征,并且容易产生偏差,这限制了常规脑电图在神经退行性疾病诊断和管理中的临床应用。我们提出了一种数据驱动的张量分解方法,以提取代表闭眼清醒期间脑电图活动常见已知来源的前6个频谱和空间特征。作为其在梅奥诊所进行神经学评估的一部分,11001名患者接受了12176次常规的、标准的10-20头皮脑电图检查。从这些原始脑电图中,我们开发了一种基于后阿尔法活动和眼动的算法,以自动选择闭眼清醒时段,并估计每个通道在1至45赫兹之间的平均频谱功率密度(SPD)。然后,我们创建了一个三维(3D)张量(记录×通道×频率),并应用典范多向分解来提取前六个因子。我们进一步确定了一组独立的患者队列,这些患者符合因阿尔茨海默病导致的轻度认知障碍(30例)或痴呆(39例)以及路易体痴呆(31例)的共识标准,以及年龄相仿的认知正常对照者(36例)。我们使用朴素贝叶斯分类方法评估了这六个因子区分这些亚组的能力,并评估了因子载荷与科克门简易精神状态评分、氟脱氧葡萄糖(FDG)PET摄取率和脑脊液阿尔茨海默病生物标志物测量值之间的线性关联。这些因子代表了具有生物学意义的脑活动,包括后阿尔法节律、前delta/theta节律和中央顶叶beta节律,它们与患者年龄和脑电图节律异常等级相关。这些因子还能够以中度到高度的准确性(曲线下面积(AUC)为0.59-0.91)区分患者与对照者,以及区分阿尔茨海默病痴呆与路易体痴呆(AUC为0.61)。此外,在阿尔茨海默病亚组中,相关的脑电图特征与认知测试表现、PET代谢和脑脊液AB42测量值相关。这项研究表明,数据驱动的方法可以从人群水平的临床脑电图中提取具有生物学意义的特征,而无需去除伪迹或事先选择通道或频段。随着不断发展,这种数据驱动的方法可能会通过协助早期识别轻度认知障碍并区分认知障碍的不同神经退行性病因,来提高脑电图在记忆护理中的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a02e/11289732/1ee549d19b31/fcae227_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验