Pettorruso Mauro, Di Lorenzo Giorgio, Benatti Beatrice, d'Andrea Giacomo, Cavallotto Clara, Carullo Rosalba, Mancusi Gianluca, Di Marco Ornella, Mammarella Giovanna, D'Attilio Antonio, Barlocci Elisabetta, Rosa Ilenia, Cocco Alessio, Padula Lorenzo Pio, Bubbico Giovanna, Perrucci Mauro Gianni, Guidotti Roberto, D'Andrea Antea, Marzetti Laura, Zoratto Francesca, Dell'Osso Bernardo Maria, Martinotti Giovanni
Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy.
Department of Mental Health, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy.
Front Psychiatry. 2024 Jul 17;15:1436006. doi: 10.3389/fpsyt.2024.1436006. eCollection 2024.
Treatment-Resistant Depression (TRD) poses a substantial health and economic challenge, persisting as a major concern despite decades of extensive research into novel treatment modalities. The considerable heterogeneity in TRD's clinical manifestations and neurobiological bases has complicated efforts toward effective interventions. Recognizing the need for precise biomarkers to guide treatment choices in TRD, herein we introduce the SelecTool Project. This initiative focuses on developing (WorkPlane 1/WP1) and conducting preliminary validation (WorkPlane 2/WP2) of a computational tool (SelecTool) that integrates clinical data, neurophysiological (EEG) and peripheral (blood sample) biomarkers through a machine-learning framework designed to optimize TRD treatment protocols. The SelecTool project aims to enhance clinical decision-making by enabling the selection of personalized interventions. It leverages multi-modal data analysis to navigate treatment choices towards two validated therapeutic options for TRD: esketamine nasal spray (ESK-NS) and accelerated repetitive Transcranial Magnetic Stimulation (arTMS). In WP1, 100 subjects with TRD will be randomized to receive either ESK-NS or arTMS, with comprehensive evaluations encompassing neurophysiological (EEG), clinical (psychometric scales), and peripheral (blood samples) assessments both at baseline (T0) and one month post-treatment initiation (T1). WP2 will utilize the data collected in WP1 to train the SelecTool algorithm, followed by its application in a second, out-of-sample cohort of 20 TRD subjects, assigning treatments based on the tool's recommendations. Ultimately, this research seeks to revolutionize the treatment of TRD by employing advanced machine learning strategies and thorough data analysis, aimed at unraveling the complex neurobiological landscape of depression. This effort is expected to provide pivotal insights that will promote the development of more effective and individually tailored treatment strategies, thus addressing a significant void in current TRD management and potentially reducing its profound societal and economic burdens.
难治性抑郁症(TRD)对健康和经济构成了重大挑战,尽管数十年来对新型治疗方式进行了广泛研究,但它仍然是一个主要问题。TRD临床表现和神经生物学基础的显著异质性使得有效干预措施的研究变得复杂。认识到需要精确的生物标志物来指导TRD的治疗选择,我们在此介绍SelecTool项目。该计划专注于开发(工作平面1/WP1)并进行初步验证(工作平面2/WP2)一种计算工具(SelecTool),该工具通过旨在优化TRD治疗方案的机器学习框架整合临床数据、神经生理学(脑电图)和外周(血液样本)生物标志物。SelecTool项目旨在通过选择个性化干预措施来加强临床决策。它利用多模态数据分析来指导针对TRD的两种经过验证的治疗选择的治疗决策:艾氯胺酮鼻喷雾剂(ESK-NS)和加速重复经颅磁刺激(arTMS)。在WP1中,100名TRD受试者将被随机分配接受ESK-NS或arTMS,在基线(T0)和治疗开始后一个月(T1)进行全面评估,包括神经生理学(脑电图)、临床(心理测量量表)和外周(血液样本)评估。WP2将利用在WP1中收集的数据训练SelecTool算法,然后将其应用于20名TRD受试者的第二个样本外队列,根据该工具的建议分配治疗。最终,这项研究旨在通过采用先进的机器学习策略和全面的数据分析来彻底改变TRD的治疗,旨在揭示抑郁症复杂的神经生物学状况。这项工作预计将提供关键见解,促进更有效和个性化治疗策略的发展,从而填补当前TRD管理中的重大空白,并可能减轻其巨大的社会和经济负担。