Suppr超能文献

拉链模式:一项使用脑电图信号进行精神病罪犯检测的调查。

Zipper Pattern: An Investigation into Psychotic Criminal Detection Using EEG Signals.

作者信息

Tasci Gulay, Barua Prabal Datta, Tanko Dahiru, Keles Tugce, Tas Suat, Sercek Ilknur, Kaya Suheda, Yildirim Kubra, Talu Yunus, Tasci Burak, Ozsoy Filiz, Gonen Nida, Tasci Irem, Dogan Sengul, Tuncer Turker

机构信息

Department of Psychiatry, Elazig Fethi Sekin City Hospital, Elazig 23280, Turkey.

School of Business (Information System), University of Southern Queensland, Toowoomba, QLD 4350, Australia.

出版信息

Diagnostics (Basel). 2025 Jan 11;15(2):154. doi: 10.3390/diagnostics15020154.

Abstract

Electroencephalography (EEG) signal-based machine learning models are among the most cost-effective methods for information retrieval. In this context, we aimed to investigate the cortical activities of psychotic criminal subjects by deploying an explainable feature engineering (XFE) model using an EEG psychotic criminal dataset. In this study, a new EEG psychotic criminal dataset was curated, containing EEG signals from psychotic criminal and control groups. To extract meaningful findings from this dataset, we presented a new channel-based feature extraction function named Zipper Pattern (ZPat). The proposed ZPat extracts features by analyzing the relationships between channels. In the feature selection phase of the proposed XFE model, an iterative neighborhood component analysis (INCA) feature selector was used to choose the most distinctive features. In the classification phase, we employed an ensemble and iterative distance-based classifier to achieve high classification performance. Therefore, a t-algorithm-based k-nearest neighbors (tkNN) classifier was used to obtain classification results. The Directed Lobish (DLob) symbolic language was used to derive interpretable results from the identities of the selected feature vectors in the final phase of the proposed ZPat-based XFE model. To obtain the classification results from the ZPat-based XFE model, leave-one-record-out (LORO) and 10-fold cross-validation (CV) methods were used. The proposed ZPat-based model achieved over 95% classification accuracy on the curated EEG psychotic criminal dataset. Moreover, a cortical connectome diagram related to psychotic criminal detection was created using a DLob-based explainable artificial intelligence (XAI) method. In this regard, the proposed ZPat-based XFE model achieved both high classification performance and interpretability. Thus, the model contributes to feature engineering, psychiatry, neuroscience, and forensic sciences. Moreover, the presented ZPat-based XFE model is one of the pioneering XAI models for investigating psychotic criminal/criminal individuals.

摘要

基于脑电图(EEG)信号的机器学习模型是信息检索中最具成本效益的方法之一。在此背景下,我们旨在通过使用EEG精神病罪犯数据集部署一个可解释特征工程(XFE)模型,来研究精神病罪犯受试者的皮层活动。在本研究中,我们精心整理了一个新的EEG精神病罪犯数据集,其中包含来自精神病罪犯组和对照组的EEG信号。为了从该数据集中提取有意义的结果,我们提出了一种名为拉链模式(ZPat)的基于通道的新特征提取函数。所提出的ZPat通过分析通道之间的关系来提取特征。在所提出的XFE模型的特征选择阶段,使用迭代邻域成分分析(INCA)特征选择器来选择最具特色的特征。在分类阶段,我们采用了一种基于集成和迭代距离的分类器,以实现高分类性能。因此,使用基于t算法的k近邻(tkNN)分类器来获得分类结果。在所提出的基于ZPat的XFE模型的最后阶段,使用定向洛比什(DLob)符号语言从所选特征向量的标识中得出可解释的结果。为了从基于ZPat的XFE模型中获得分类结果,使用了留一记录法(LORO)和10折交叉验证(CV)方法。所提出的基于ZPat的模型在精心整理的EEG精神病罪犯数据集上实现了超过95%的分类准确率。此外,使用基于DLob的可解释人工智能(XAI)方法创建了一个与精神病罪犯检测相关的皮层连接组图。在这方面,所提出的基于ZPat的XFE模型实现了高分类性能和可解释性。因此,该模型对特征工程、精神病学、神经科学和法医学都有贡献。此外,所提出的基于ZPat的XFE模型是用于研究精神病罪犯/罪犯个体的开创性XAI模型之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5741/11763445/21f83eefc059/diagnostics-15-00154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验