Kawatsu Kazutaka
Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
R Soc Open Sci. 2024 Jul 31;11(7):231795. doi: 10.1098/rsos.231795. eCollection 2024 Jul.
Quantifying species interactions based on empirical observations is crucial for ecological studies. Advancements in nonlinear time-series analyses, particularly S-maps, are promising for high-dimensional and non-equilibrium ecosystems. S-maps sequentially perform a local linear model fitting to the time evolution of neighbouring points on the reconstructed attractor manifold, and the coefficients can approximate the Jacobian elements corresponding to interaction effects. However, despite that the advantages in nonlinear forecasting with noise-contaminated data, these methodologies have a limitation in the Jacobian estimation accuracy owing to non-equidistantly stretched local manifolds in the state space. Herein, we therefore introduced a local manifold distance (LMD) concept, a non-equidistant measure based on the multi-faceted state dependency. By integrating LMD with advanced computation techniques, we presented a robust and efficient analytical method, LMD-based regression (LMDr). To validate its advantages in prediction and Jacobian estimation, we analysed synthetic time series of model ecosystems with different noise levels and applied it to an experimental protozoan predator-prey system with established biological information. The robustness to noise was the highest for LMDr, which also showed a better correspondence to expected predator-prey interactions in the protozoan system. Thus, LMDr can be applied to study complex ecological networks under dynamic conditions.
基于实证观察对物种相互作用进行量化,对生态学研究至关重要。非线性时间序列分析的进展,尤其是S映射,对高维非平衡生态系统很有前景。S映射依次对重构吸引子流形上相邻点的时间演化进行局部线性模型拟合,其系数可近似对应相互作用效应的雅可比元素。然而,尽管这些方法在处理受噪声污染的数据进行非线性预测方面具有优势,但由于状态空间中局部流形的非等距拉伸,它们在雅可比估计精度方面存在局限性。因此,在此我们引入了局部流形距离(LMD)概念,这是一种基于多方面状态依赖性的非等距度量。通过将LMD与先进计算技术相结合,我们提出了一种稳健且高效的分析方法,即基于LMD的回归(LMDr)。为了验证其在预测和雅可比估计方面的优势,我们分析了具有不同噪声水平的模型生态系统的合成时间序列,并将其应用于具有既定生物学信息的实验性原生动物捕食者 - 猎物系统。LMDr对噪声的鲁棒性最高,在原生动物系统中也与预期的捕食者 - 猎物相互作用表现出更好的对应关系。因此,LMDr可应用于研究动态条件下的复杂生态网络。