Suppr超能文献

可解释人工智能与变压器模型:揭示营养对阿尔茨海默病死亡率的影响

Explainable AI and transformer models: Unraveling the nutritional influences on Alzheimer's disease mortality.

作者信息

Liu Ziming, Liu Longjian, Heidel Robert E, Zhao Xiaopeng

机构信息

Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, 37916, USA.

Department of Epidemiology and Biostatistic, Dornsife School of Public Health, Drexel University, 3215 Market St, Philadelphia, 19104, USA.

出版信息

Smart Health (Amst). 2024 Jun;32. doi: 10.1016/j.smhl.2024.100478. Epub 2024 Mar 20.

Abstract

This pioneering study introduces the use of transformer-based machine learning models and explainable AI approaches to explore the impact of nutrition on Alzheimer's disease (AD) mortality. Using data from the Third National Health and Nutrition Examination Survey (Nhanes iii 1988 to 1994) and the NHANES III Mortality-Linked File (2019) databases, we investigate the intricate relationship between various nutritional factors and AD mortality. Our approach features a novel application of transformer models, which are then benchmarked against established methods like random forests and support vector machines. This comparison not only underscores the strengths of transformer models in handling complex medical datasets but also highlights their potential for providing deeper insights into disease progression. Key findings, such as the significant roles of Platelet distribution width in AD mortality in transformer and Serum Vitamin B12 in random forest, are enhanced by the use of Explainable Artificial Intelligence (XAI), particularly the Shapley Additive Explanations (SHAP) and the integrated gradient methods. This study serves as a vital step forward in applying advanced AI techniques to medical research, offering new perspectives in understanding and combating Alzheimer's Disease.

摘要

这项开创性研究引入了基于Transformer的机器学习模型和可解释人工智能方法,以探索营养对阿尔茨海默病(AD)死亡率的影响。利用第三次全国健康与营养检查调查(1988年至1994年的第三次全国健康与营养检查调查)和NHANES III死亡率关联文件(2019年)数据库的数据,我们研究了各种营养因素与AD死亡率之间的复杂关系。我们的方法具有Transformer模型的新颖应用,然后将其与随机森林和支持向量机等既定方法进行基准测试。这种比较不仅强调了Transformer模型在处理复杂医学数据集方面的优势,还突出了它们在深入了解疾病进展方面的潜力。通过使用可解释人工智能(XAI),特别是Shapley加法解释(SHAP)和集成梯度方法,增强了关键发现,如血小板分布宽度在Transformer模型中对AD死亡率的重要作用以及血清维生素B12在随机森林中的重要作用。这项研究是将先进人工智能技术应用于医学研究的重要一步,为理解和对抗阿尔茨海默病提供了新的视角。

相似文献

本文引用的文献

2
Machine learning for the prediction of cognitive impairment in older adults.用于预测老年人认知障碍的机器学习
Front Neurosci. 2023 Apr 27;17:1158141. doi: 10.3389/fnins.2023.1158141. eCollection 2023.
3
2023 Alzheimer's disease facts and figures.2023 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2023 Apr;19(4):1598-1695. doi: 10.1002/alz.13016. Epub 2023 Mar 14.
8
BEHRT: Transformer for Electronic Health Records.BEHRT:电子健康记录的转换器。
Sci Rep. 2020 Apr 28;10(1):7155. doi: 10.1038/s41598-020-62922-y.
9
Serum selenium level and cancer risk: a nested case-control study.血清硒水平与癌症风险:一项巢式病例对照研究。
Hered Cancer Clin Pract. 2019 Dec 23;17:33. doi: 10.1186/s13053-019-0131-7. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验