Suppr超能文献

对一个三级记忆中心的大队列中的个体阿尔法频率进行分析。

Analysis of individual alpha frequency in a large cohort from a tertiary memory center.

机构信息

Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

Eur J Neurol. 2024 Oct;31(10):e16424. doi: 10.1111/ene.16424. Epub 2024 Aug 1.

Abstract

BACKGROUND AND PURPOSE

Precise and timely diagnosis is crucial for the optimal use of emerging disease-modifying treatments for Alzheimer disease (AD). Electroencephalography (EEG), which is noninvasive and cost-effective, can capture neural abnormalities linked to various dementias. This study explores the use of individual alpha frequency (IAF) derived from EEG as a diagnostic and prognostic tool in cognitively impaired patients.

METHODS

This retrospective study included 375 patients from the tertiary Memory Clinic of IRCCS San Raffaele Hospital, Milan, Italy. Participants underwent clinical and neuropsychological assessments, brain imaging, cerebrospinal fluid biomarker analysis, and resting-state EEG. Patients were categorized by amyloid status, the AT(N) classification system, clinical diagnosis, and mild cognitive impairment (MCI) progression to AD dementia. IAF was calculated and compared among study groups. Receiver operating characteristic (ROC) analysis was used to calculate its discriminative performance.

RESULTS

IAF was higher in amyloid-negative subjects and varied significantly across AT(N) groups. ROC analysis confirmed IAF's ability to distinguish A-T-N- from the A+T+N+ and A+T-N+ groups. IAF was lower in AD and Lewy body dementia patients compared to MCI and other dementia types, with moderate discriminatory capability. Among A+ MCI patients, IAF was significantly lower in those who converted to AD within 2 years compared to stable MCI patients and predicted time to conversion (p < 0.001, R = 0.38).

CONCLUSIONS

IAF is a valuable tool for dementia diagnosis and prognosis, correlating with amyloid status and neurodegeneration. It effectively predicts MCI progression to AD, supporting its use in early, targeted interventions in the context of disease-modifying treatments.

摘要

背景与目的

对于优化使用新兴的阿尔茨海默病(AD)疾病修饰治疗方法,准确和及时的诊断至关重要。脑电图(EEG)是一种非侵入性且具有成本效益的方法,可以捕捉与各种痴呆症相关的神经异常。本研究探讨了从 EEG 中提取的个体 alpha 频率(IAF)作为认知障碍患者的诊断和预后工具的应用。

方法

本回顾性研究纳入了来自意大利米兰的三级记忆诊所的 375 名患者。参与者接受了临床和神经心理学评估、脑成像、脑脊液生物标志物分析和静息状态 EEG。根据淀粉样蛋白状态、AT(N)分类系统、临床诊断和轻度认知障碍(MCI)进展为 AD 痴呆对患者进行分类。计算并比较了研究组中的 IAF。使用接收者操作特征(ROC)分析计算其判别性能。

结果

IAF 在淀粉样蛋白阴性患者中较高,且在 AT(N)组之间差异显著。ROC 分析证实 IAF 能够区分 A-T-N-与 A+T+N+和 A+T-N+组。AD 和路易体痴呆患者的 IAF 低于 MCI 和其他痴呆类型,具有中等的判别能力。在 A+MCI 患者中,在 2 年内转化为 AD 的患者的 IAF 明显低于稳定的 MCI 患者,并且预测了向 AD 的转化时间(p<0.001,R=0.38)。

结论

IAF 是一种用于痴呆诊断和预后的有价值的工具,与淀粉样蛋白状态和神经退行性变相关。它可以有效地预测 MCI 向 AD 的进展,支持在疾病修饰治疗的背景下对其进行早期、有针对性的干预。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验