Suppr超能文献

改善真实数据应用的严谨性和可重复性的因果关系图和模拟。

The Causal Roadmap and Simulations to Improve the Rigor and Reproducibility of Real-data Applications.

机构信息

From the University of California, Berkeley, Berkeley, CA.

出版信息

Epidemiology. 2024 Nov 1;35(6):791-800. doi: 10.1097/EDE.0000000000001773. Epub 2024 Aug 1.

Abstract

The Causal Roadmap outlines a systematic approach to asking and answering questions of cause and effect: define the quantity of interest, evaluate needed assumptions, conduct statistical estimation, and carefully interpret results. To protect research integrity, it is essential that the algorithm for statistical estimation and inference be prespecified prior to conducting any effectiveness analyses. However, it is often unclear which algorithm will perform optimally for the real-data application. Instead, there is a temptation to simply implement one's favorite algorithm, recycling prior code or relying on the default settings of a computing package. Here, we call for the use of simulations that realistically reflect the application, including key characteristics such as strong confounding and dependent or missing outcomes, to objectively compare candidate estimators and facilitate full specification of the statistical analysis plan. Such simulations are informed by the Causal Roadmap and conducted after data collection but prior to effect estimation. We illustrate with two worked examples. First, in an observational longitudinal study, we use outcome-blind simulations to inform nuisance parameter estimation and variance estimation for longitudinal targeted minimum loss-based estimation. Second, in a cluster randomized trial with missing outcomes, we use treatment-blind simulations to examine type-I error control in two-stage targeted minimum loss-based estimation. In both examples, realistic simulations empower us to prespecify an estimation approach with strong expected finite sample performance, and also produce quality-controlled computing code for the actual analysis. Together, this process helps to improve the rigor and reproducibility of our research.

摘要

因果关系路线图概述了一种系统的方法来提出和回答因果问题

定义感兴趣的数量,评估所需的假设,进行统计估计,并仔细解释结果。为了保护研究的完整性,至关重要的是,在进行任何有效性分析之前,预先指定用于统计估计和推断的算法。然而,通常不清楚哪种算法将最适合实际数据应用。相反,人们往往会简单地实施自己喜欢的算法,重复使用先前的代码或依赖计算包的默认设置。在这里,我们呼吁使用真实反映应用的模拟,包括强混杂和依赖或缺失结果等关键特征,客观地比较候选估计量,并促进统计分析计划的充分规范。这种模拟是在数据收集后但在效果估计之前,根据因果关系路线图进行的。我们通过两个示例来说明。首先,在一项观察性纵向研究中,我们使用基于结局的盲模拟来为基于纵向有向无环图的最小损失估计中的干扰参数估计和方差估计提供信息。其次,在一项具有缺失结局的集群随机试验中,我们使用基于治疗的盲模拟来检验两阶段基于有向无环图的最小损失估计中的Ⅰ型错误控制。在这两个例子中,真实的模拟使我们能够预先指定一种具有强预期有限样本性能的估计方法,并为实际分析生成经过质量控制的计算代码。总的来说,这个过程有助于提高我们研究的严谨性和可重复性。

相似文献

6
Targeted maximum likelihood estimation in safety analysis.目标最大似然估计在安全性分析中的应用。
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S91-8. doi: 10.1016/j.jclinepi.2013.02.017.

本文引用的文献

5
A causal roadmap for generating high-quality real-world evidence.生成高质量真实世界证据的因果路线图。
J Clin Transl Sci. 2023 Sep 22;7(1):e212. doi: 10.1017/cts.2023.635. eCollection 2023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验