Suppr超能文献

一种新的层次数据分析方法:针对簇级暴露的因果效应的有针对性的极大似然估计。

A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.

机构信息

1 Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA.

2 Netflix, Los Gatos, CA, USA.

出版信息

Stat Methods Med Res. 2019 Jun;28(6):1761-1780. doi: 10.1177/0962280218774936. Epub 2018 Jun 19.

Abstract

We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.

摘要

我们经常试图在群组层面上评估自然发生或随机分配的暴露的影响。例如,关于健康的邻里决定因素的文献不断增加。同样,社区随机试验也被应用于了解干预措施在现实世界中的实施、可持续性以及对具有个体疗效的干预措施的人群影响。在这些环境中,由于共享的群组层面因素(包括暴露)以及个体之间的社会或生物相互作用,个体层面的结果是相关的。为了灵活有效地估计群组层面暴露的影响,我们提出了两种有针对性的最大似然估计量(TMLE)。第一个 TMLE 是在非参数因果模型下开发的,该模型允许群组内个体之间存在任意交互作用。这些相互作用包括结果的直接传播(即传染)和一个个体的协变量对另一个个体的结果的影响(即协变量干扰)。第二个 TMLE 是在因果子模型下开发的,假设群组层面和个体特定的协变量足以控制混杂。模拟比较了替代估计量,并说明了在避免不必要的假设的情况下,在估计过程中结合个体层面的风险因素和结果的潜在收益。我们的结果表明,在观察性环境下,子模型下的估计可能会导致偏差和误导性推断。在估计过程中纳入工作假设比假设它们在基础因果模型中成立更稳健。我们通过 HIV 预防和治疗的应用来说明我们的方法。

相似文献

3
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
8
Targeted maximum likelihood estimation in safety analysis.目标最大似然估计在安全性分析中的应用。
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S91-8. doi: 10.1016/j.jclinepi.2013.02.017.

引用本文的文献

9
Demystifying estimands in cluster-randomised trials.剖析群组随机试验中的估计量。
Stat Methods Med Res. 2024 Jul;33(7):1211-1232. doi: 10.1177/09622802241254197. Epub 2024 May 23.
10
Cluster Randomized Trials Designed to Support Generalizable Inferences.旨在支持可推广推断的群组随机试验。
Eval Rev. 2024 Dec;48(6):1088-1114. doi: 10.1177/0193841X231169557. Epub 2024 Jan 17.

本文引用的文献

1
Risk ratios for contagious outcomes.传染性结局的风险比。
J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0696. Epub 2018 Jan 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验