Zunzunegui-Bru Eva, Alfarano Serena Rosa, Zueblin Patrick, Vondracek Hendrik, Piccirilli Federica, Vaccari Lisa, Assenza Salvatore, Mezzenga Raffaele
Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland.
Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste 34149, Italy.
ACS Nano. 2024 Aug 13;18(32):21376-21387. doi: 10.1021/acsnano.4c05857. Epub 2024 Aug 1.
Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.
处于软纳米限域状态下的水具有与 bulk 水根本不同的物理和化学性质;然而,限域系统和几何形状的多样性和特异性掩盖了其任何潜在的普遍特征。在此,我们通过采用脂质中间相作为理想的纳米限域系统来推进这一探索,从而能够在不改变界面化学性质的情况下,研究在限域介质的拓扑和几何性质发生系统变化时水的行为。通过结合太赫兹吸收光谱实验和分子动力学模拟,我们揭示了支配纳米限域水物理性质的普遍规律,概括了在不同水合水平和纳米限域拓扑结构下收集的数据。这种与几何形状无关的普遍性通过主曲线的存在得到证明,这些主曲线表征了模拟水的结构和动力学与距脂质 - 水界面距离的函数关系。基于我们的理论发现,我们预测了一个无参数定律,该定律描述了界面水的量与系统结构尺寸(即晶格参数)之间的关系,它能在同一条曲线内捕捉实验和数值结果,无需任何拟合。我们的结果为深入了解软纳米限域状态下水的基本物理性质提供了见解,并为基于结构实验数据准确估计非 bulk 水的量提供了一个实用工具。