Azhar Azmil Haris, Kobayashi Yusei, Ikeda Takahiro, Yamakawa Masashi
Faculty of Mechanical Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
High-Performance Simulation Research Center, Kyoto Institute of Technology Matsugasaki, Sakyo-ku 606-8585 Kyoto Japan.
RSC Adv. 2025 Jul 8;15(29):23588-23595. doi: 10.1039/d5ra03226a. eCollection 2025 Jul 4.
The interplay between nanoparticle (NP) interaction anisotropy and nanoscale confinement gives rise to diverse self-assembly behaviors and the resulting macroscopic thermal properties. In this study, we use molecular dynamics (MD) simulations to explore the relationship between the structural and thermal properties of nanofluids confined in nanoscale channels. The chemical surface design of NPs alters the dependence of thermal conductivity on channel width: homogeneous hydrophilic (HI) NPs maintain thermal conductivity by forming a stable adsorption layer around dispersed NPs, whereas diblock Janus NPs exhibit clustering effects due to interaction anisotropy. This clustering weakens adsorption layers, reducing thermal conductivity even under weak confinement. Under strong confinement, solvent molecules form more pronounced structured layers near the walls; however, NPs disrupt this ordering, resulting in lower thermal conductivity than in a confined purely solvent system. Diblock Janus NPs, in particular, disrupt these layers more due to their clustering, further hindering thermal conductivity. Although both NP types exhibit reduced Brownian motion as channel width decreases, we conclude that it does not significantly affect the thermal conductivity of nanofluids. For instance, Janus NPs, which exhibit greater Brownian motion in wider channels, still show lower thermal conductivity than HI NPs. While HI NPs form stable adsorption layers that enhance thermal transport, Janus NPs tend to self-assemble into micelles, weakening the adsorption layer and further reducing thermal conductivity. Our study provides molecular insight into the relationship between NP dynamics, surface properties, and adsorption layers in determining the thermal conductivity of confined nanofluids.
纳米颗粒(NP)相互作用各向异性与纳米尺度限制之间的相互作用产生了多样的自组装行为以及由此产生的宏观热性质。在本研究中,我们使用分子动力学(MD)模拟来探究限制在纳米尺度通道中的纳米流体的结构与热性质之间的关系。纳米颗粒的化学表面设计改变了热导率对通道宽度的依赖性:均匀亲水性(HI)纳米颗粒通过在分散的纳米颗粒周围形成稳定的吸附层来维持热导率,而双嵌段Janus纳米颗粒由于相互作用各向异性而表现出聚集效应。这种聚集削弱了吸附层,即使在弱限制条件下也会降低热导率。在强限制条件下,溶剂分子在壁附近形成更明显的结构化层;然而,纳米颗粒会破坏这种有序性,导致热导率低于纯溶剂受限系统。特别是双嵌段Janus纳米颗粒,由于其聚集会更严重地破坏这些层,进一步阻碍热导率。尽管随着通道宽度减小,两种类型的纳米颗粒的布朗运动均减弱,但我们得出结论,这对纳米流体的热导率没有显著影响。例如,在较宽通道中表现出更大布朗运动的Janus纳米颗粒,其热导率仍低于HI纳米颗粒。虽然HI纳米颗粒形成稳定的吸附层以增强热传递,但Janus纳米颗粒倾向于自组装成胶束,削弱吸附层并进一步降低热导率。我们的研究为纳米颗粒动力学、表面性质和吸附层在决定受限纳米流体热导率方面的关系提供了分子层面的见解。