Suppr超能文献

使用启发式辅助集成学习模型从光电容积脉搏波信号中去除运动伪影,以提取呼吸和血氧饱和度数据的高效模型。

An efficient model for extracting respiratory and blood oxygen saturation data from photoplethysmogram signals by removing motion artifacts using heuristic-aided ensemble learning model.

机构信息

Department of E&I Engineering, Kakatiya Institute of Technology and Science, Warangal, Koukonda, Telangana, 506015, India.

Department of ECE, Kakatiya Institute of Technology and Science, Warangal, Koukonda, Telangana, 506015, India.

出版信息

Comput Biol Med. 2024 Sep;180:108911. doi: 10.1016/j.compbiomed.2024.108911. Epub 2024 Jul 31.

Abstract

Patients with surgical, pulmonary, and cardiac problems, continual monitoring of Oxygen Saturation of a Person (SpO2) and Respiratory Rate (RR) is essential. Similarly, the persons with cardiopulmonary health issues, RR estimation is crucial. The performance of the ventilator assistance and lung medicines are evaluated using SpO2 and RR. For the persons, those who are living alone with respiratory illnesses need a compulsory estimation of RR. In case of serious illness, the RR might face abrupt changes. The immobility of the disturbance and RR makes the RR evaluation from the PhotoPlethysmoGraphic (PPG) signals is a difficult challenge. So, an efficient RR and SpO2 estimation framework from the PPG signal using the deep learning method is developed in this paper. At first, the PPG signal is collected from standard data sources. The collected PPG signals undergo signal pre-processing. The pre-processing procedures include Motion Artifacts (MA) removal and filtering techniques. The pre-processed signals are split into distinct windows. From the split windows of the signals, the spectral features, RR, and Respiratory Peak Variance (RPV) features are extracted. The retrieved features are selected optimally with the help of Advanced Golden Tortoise Beetle Optimizer (AGTBO). The weights are chosen optimally with the same AGTBO. The optimally selected features are fused with the optimal features to get the weighted optimal features. These weighted optimal features are fed into the Ensemble Learning-based RR and SpO2 Estimation Network (ELRR-SpO2EN). The ensemble learning model is developed by combining Multilayer Perceptron (MLP), AdaBoost, and Attention-based Long Short Term Memory (A-LSTM). The performance of the developed RR and SpO2 estimation model is compared with other existing techniques. The experimental analysis results revealed that the proposed AGTBO-ELRR-SpO2EN model attained 96 % accuracy for the second dataset, which is higher than the conventional models such as MLP (90 %), Adaboost (92 %), A-LSTM (92 %), and MLP-ADA-ALSTM (94 %). Thus, it has been confirmed that the designed RR and SpO2 estimation framework from PPG signals is more efficient than the other conventional models.

摘要

对于有手术、肺部和心脏问题的患者,持续监测血氧饱和度 (SpO2) 和呼吸频率 (RR) 是至关重要的。同样,有心肺健康问题的人,RR 估计也很关键。SpO2 和 RR 用于评估呼吸机辅助和肺部药物的性能。对于那些独自患有呼吸系统疾病的人来说,需要强制估计 RR。在严重疾病的情况下,RR 可能会突然发生变化。RR 的不稳定性和干扰使得从光电体积描记 (PPG) 信号中评估 RR 变得具有挑战性。因此,本文开发了一种使用深度学习方法从 PPG 信号中进行 RR 和 SpO2 有效估计的框架。首先,从标准数据源中采集 PPG 信号。采集的 PPG 信号经过信号预处理。预处理步骤包括去除运动伪影 (MA) 和滤波技术。预处理后的信号被分为不同的窗口。从信号的分裂窗口中,提取出光谱特征、RR 和呼吸峰方差 (RPV) 特征。使用高级金龟甲虫优化器 (AGTBO) 对检索到的特征进行最优选择。使用相同的 AGTBO 最优选择权重。最优选择的特征与最优特征融合得到加权最优特征。这些加权最优特征被输入到基于集成学习的 RR 和 SpO2 估计网络 (ELRR-SpO2EN) 中。通过结合多层感知器 (MLP)、AdaBoost 和基于注意力的长短期记忆 (A-LSTM) 来开发集成学习模型。与其他现有技术相比,对所开发的 RR 和 SpO2 估计模型的性能进行了比较。实验分析结果表明,对于第二个数据集,所提出的 AGTBO-ELRR-SpO2EN 模型的准确率为 96%,高于 MLP (90%)、AdaBoost (92%)、A-LSTM (92%) 和 MLP-ADA-ALSTM (94%) 等传统模型。因此,证实了从 PPG 信号设计的 RR 和 SpO2 估计框架比其他传统模型更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验