Suppr超能文献

开发和验证用于药物依从性应用程序的移动依从性满意度量表(MASS)。

Development and validation of the mobile adherence satisfaction scale (MASS) for medication adherence apps.

机构信息

Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

出版信息

Res Social Adm Pharm. 2024 Oct;20(10):959-968. doi: 10.1016/j.sapharm.2024.07.004. Epub 2024 Jul 26.

Abstract

OBJECTIVE

To develop and validate the Mobile Adherence Satisfaction Scale (MASS) for assessing user satisfaction with mobile health applications aimed to improve medication adherence.

METHODS

The study involved patients over 18 with asthma, hypertension, heart failure, or diabetes, who used the CareAide® app for six months. Scale development included a literature review, expert consultations, and patient interviews, initially identifying 129 items. These were refined to 27 using a two-round Delphi technique and grouped into six dimensions: user interface, perceived usability, system quality, service quality, feature satisfaction, and general satisfaction. A pilot study with 30 participants further refined the model, which was then validated with 135 participants using exploratory and confirmatory factor analyses in SPSS 29 and SmartPLS 4. Data were collected via self-administered questionnaires.

RESULTS

A total of 135 complete questionnaires were analysed. Respondents had an average age of 66.7 years (SD = 11.6) with 42.2 % male (n = 57) and 57.8 % female (n = 78). After removal of an item due to cross loading, exploratory factor analysis resulted six dimensions and 26 items with Kaiser-Meyer-Olkin measure of 0.837 and Bartlett's Test of Sphericity (χ(n = 325) = 2085.673, P < 0.001). The confirmatory factor analysis confirmed high reliability and validity: Cronbach's alpha values > 0.70 for each dimension and an overall alpha of 0.89, with Composite Reliability and Average Variance Extracted both >0.70 and >0.50, respectively, for each dimension. Structural model indicated a significant positive impact of user interface (β = 0.226, P = 0.006) and feature satisfaction (β = 0.230, P = 0.002) on general satisfaction, explaining 23.1 % of the variance (R = 0.231).

CONCLUSION

The study developed and validated the MASS, a reliable tool for assessing user satisfaction with mHealth apps. User interface design and feature satisfaction are key for long-term engagement and consistent medication adherence.

摘要

目的

开发并验证移动依从性满意度量表(MASS),用于评估旨在提高药物依从性的移动健康应用程序的用户满意度。

方法

该研究纳入了年龄在 18 岁以上的哮喘、高血压、心力衰竭或糖尿病患者,他们使用 CareAide®应用程序六个月。量表的开发包括文献回顾、专家咨询和患者访谈,最初确定了 129 个项目。这些项目通过两轮 Delphi 技术进行了精炼,分为六个维度:用户界面、感知易用性、系统质量、服务质量、功能满意度和总体满意度。一项涉及 30 名参与者的试点研究进一步完善了模型,随后使用 SPSS 29 和 SmartPLS 4 对 135 名参与者进行了探索性和验证性因子分析,以验证该模型。数据通过自填式问卷收集。

结果

共分析了 135 份完整的问卷。受访者的平均年龄为 66.7 岁(SD=11.6),其中男性占 42.2%(n=57),女性占 57.8%(n=78)。由于交叉加载而删除了一个项目后,探索性因子分析得出了六个维度和 26 个项目,Kaiser-Meyer-Olkin 测量值为 0.837,Bartlett 球形检验(χ(n=325)=2085.673,P<0.001)。验证性因子分析证实了高可靠性和有效性:每个维度的克朗巴赫α值均>0.70,总体α值为 0.89,每个维度的综合可靠性和平均方差提取值均>0.70 和>0.50。结构模型表明用户界面(β=0.226,P=0.006)和功能满意度(β=0.230,P=0.002)对总体满意度有显著的积极影响,解释了 23.1%的方差(R=0.231)。

结论

本研究开发并验证了 MASS,这是一种评估移动健康应用程序用户满意度的可靠工具。用户界面设计和功能满意度是长期参与和持续药物依从性的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验