Yu Xiang, Genz Nina S, Mendes Rafael G, Ye Xinwei, Meirer Florian, Nachtegaal Maarten, Monai Matteo, Weckhuysen Bert M
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science & Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, CG, Utrecht, 3584, The Netherlands.
Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland.
Nat Commun. 2024 Aug 1;15(1):6494. doi: 10.1038/s41467-024-50216-0.
Evolution of the Pd active centers in size and spatial distribution leads to an irreversible deactivation in many high-temperature catalytic processes. This research demonstrates the use of a defective alumina (AlO) as catalyst support to anchor Pd atoms and suppress the growth of Pd clusters in catalytic methane oxidation. A combination of operando spectroscopy and density functional theory (DFT) calculations provide insights into the evolution of Pd species and reveals distinct catalytic methane oxidation mechanisms on Pd single atoms, clusters, and nanoparticles (NPs). Among these Pd species, the cluster active centers are found to be the most favorable participants in methane oxidation due to their high dispersion, high content of Pd oxidation state, and resistance to deactivation by carbonates, bicarbonates, and water. The Pd/AlO catalyst shows increased stability with respect to a Pd/AlO counterpart during simulated aging in alternating reducing and oxidizing conditions due to stronger interactions with the support. This study demonstrates that defect engineering of non-reducible supports can constrain the evolution of active centers, which holds promising potential for widespread utilization across diverse industrial catalytic processes, including various hydrogenation and oxidation reactions.
钯活性中心在尺寸和空间分布上的演变在许多高温催化过程中会导致不可逆失活。本研究展示了使用缺陷氧化铝(AlO)作为催化剂载体来锚定钯原子,并在催化甲烷氧化中抑制钯簇的生长。原位光谱和密度泛函理论(DFT)计算相结合,深入了解了钯物种的演变,并揭示了钯单原子、簇和纳米颗粒(NP)上不同的催化甲烷氧化机制。在这些钯物种中,簇活性中心因其高分散性、高钯氧化态含量以及对碳酸盐、碳酸氢盐和水失活的抗性,被发现是甲烷氧化中最有利的参与者。由于与载体的相互作用更强,在交替还原和氧化条件下的模拟老化过程中,Pd/AlO催化剂相对于Pd/AlO对应物表现出更高的稳定性。这项研究表明,不可还原载体的缺陷工程可以限制活性中心的演变,这在包括各种氢化和氧化反应在内的多种工业催化过程中具有广泛应用的潜力。