Suppr超能文献

通过纳入气象因素和空气污染物来预测类风湿性关节炎患者的就诊人数。

Forecasting rheumatoid arthritis patient arrivals by including meteorological factors and air pollutants.

作者信息

Ye Zhe, Ye Benjun, Ming Zilin, Shu Jicheng, Xia Changqing, Xu Lijian, Wan Yong, Wei Zizhuang

机构信息

Department of Endocrinology, Hangzhou Linping Traditional Chinese Medicine Hospital, No. 101 Yuncheng Street, Linping District, Hangzhou City, Zhejiang Province, China.

School of Clinical Medicine, Shanxi Datong University, No. 1 Xingyun Street, Datong City, Shanxi Province, China.

出版信息

Sci Rep. 2024 Aug 1;14(1):17840. doi: 10.1038/s41598-024-67694-3.

Abstract

The burden of rheumatoid arthritis (RA) has gradually elevated, increasing the need for medical resource redistribution. Forecasting RA patient arrivals can be helpful in managing medical resources. However, no relevant studies have been conducted yet. This study aims to construct a long short-term memory (LSTM) model, a deep learning model recently developed for novel data processing, to forecast RA patient arrivals considering meteorological factors and air pollutants and compares this model with traditional methods. Data on RA patients, meteorological factors and air pollutants from 2015 to 2022 were collected and normalized to construct moving average (MA)- and autoregressive (AR)-based and LSTM models. After data normalization, the root mean square error (RMSE) was adopted to evaluate models' forecast ability. A total of 2422 individuals were enrolled. Not using the environmental data, the RMSEs of the MA- and AR-based models' test sets are 0.131, 0.132, and 0.117 when the training set: test set ratio is 2:1, 3:1, and 7:1, while they are 0.110, 0.130, and 0.112 for the univariate LSTM models. Considering meteorological factors and air pollutants, the RMSEs of the MA- and AR-based model test sets were 0.142, 0.303, and 0.164 when the training set: test set ratio is 2:1, 3:1, and 7:1, while they were 0.108, 0.119, and 0.109 for the multivariable LSTM models. Our study demonstrated that LSTM models can forecast RA patient arrivals more accurately than MA- and AR-based models for datasets of all three sizes. Considering the meteorological factors and air pollutants can further improve the forecasting ability of the LSTM models. This novel method provides valuable information for medical management, the optimization of medical resource redistribution, and the alleviation of resource shortages.

摘要

类风湿关节炎(RA)的负担已逐渐加重,这增加了重新分配医疗资源的必要性。预测类风湿关节炎患者的就诊人数有助于医疗资源的管理。然而,目前尚未开展相关研究。本研究旨在构建一个长短期记忆(LSTM)模型,这是一种最近开发用于处理新数据的深度学习模型,用于考虑气象因素和空气污染物来预测类风湿关节炎患者的就诊人数,并将该模型与传统方法进行比较。收集了2015年至2022年期间类风湿关节炎患者、气象因素和空气污染物的数据,并进行归一化处理,以构建基于移动平均(MA)和自回归(AR)的模型以及LSTM模型。数据归一化后,采用均方根误差(RMSE)来评估模型的预测能力。总共纳入了2422名个体。在不使用环境数据的情况下,当训练集与测试集的比例为2:1、3:1和7:1时,基于MA和AR的模型测试集的RMSE分别为0.131、0.132和0.117,而单变量LSTM模型的RMSE分别为0.110、0.130和0.112。考虑气象因素和空气污染物时,当训练集与测试集的比例为2:1、3:1和7:1时,基于MA和AR的模型测试集的RMSE分别为0.142、0.303和0.164,而多变量LSTM模型的RMSE分别为0.108、0.119和0.109。我们的研究表明,对于所有三种规模的数据集,LSTM模型比基于MA和AR的模型能更准确地预测类风湿关节炎患者的就诊人数。考虑气象因素和空气污染物可以进一步提高LSTM模型的预测能力。这种新方法为医疗管理、优化医疗资源再分配以及缓解资源短缺提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ad7/11294361/589c40d7af6b/41598_2024_67694_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验