Suppr超能文献

iEat:基于生物阻抗传感的自动可穿戴式饮食监测

iEat: automatic wearable dietary monitoring with bio-impedance sensing.

作者信息

Liu Mengxi, Zhou Bo, Rey Vitor Fortes, Bian Sizhen, Lukowicz Paul

机构信息

German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany.

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, 67663, Germany.

出版信息

Sci Rep. 2024 Aug 2;14(1):17873. doi: 10.1038/s41598-024-67765-5.

Abstract

Diet is an inseparable part of good health, from maintaining a healthy lifestyle for the general population to supporting the treatment of patients suffering from specific diseases. Therefore it is of great significance to be able to monitor people's dietary activity in their daily life remotely. While the traditional practices of self-reporting and retrospective analysis are often unreliable and prone to errors; sensor-based remote diet monitoring is therefore an appealing approach. In this work, we explore an atypical use of bio-impedance by leveraging its unique temporal signal patterns, which are caused by the dynamic close-loop circuit variation between a pair of electrodes due to the body-food interactions during dining activities. Specifically, we introduce iEat, a wearable impedance-sensing device for automatic dietary activity monitoring without the need for external instrumented devices such as smart utensils. By deploying a single impedance sensing channel with one electrode on each wrist, iEat can recognize food intake activities (e.g., cutting, putting food in the mouth with or without utensils, drinking, etc.) and food types from a defined category. The principle is that, at idle, iEat measures only the normal body impedance between the wrist-worn electrodes; while the subject is doing the food-intake activities, new paralleled circuits will be formed through the hand, mouth, utensils, and food, leading to consequential impedance variation. To quantitatively evaluate iEat in real-life settings, a food intake experiment was conducted in an everyday table-dining environment, including 40 meals performed by ten volunteers. With a lightweight, user-independent neural network model, iEat could detect four food intake-related activities with a macro F1 score of 86.4% and classify seven types of foods with a macro F1 score of 64.2%.

摘要

饮食是健康不可或缺的一部分,从维持普通人群的健康生活方式到支持特定疾病患者的治疗。因此,能够在日常生活中远程监测人们的饮食活动具有重要意义。然而,传统的自我报告和回顾性分析方法往往不可靠且容易出错;因此,基于传感器的远程饮食监测是一种很有吸引力的方法。在这项工作中,我们通过利用生物阻抗独特的时间信号模式探索了一种非典型应用,这种模式是由用餐活动期间身体与食物相互作用导致一对电极之间动态闭环电路变化引起的。具体来说,我们推出了iEat,这是一种可穿戴阻抗传感设备,用于自动监测饮食活动,无需智能餐具等外部仪器设备。通过在每个手腕上部署一个带有一个电极的单阻抗传感通道,iEat可以识别食物摄入活动(例如切割、用或不用餐具将食物放入口中、饮水等)以及从定义类别中识别食物类型。其原理是,在闲置时,iEat仅测量手腕佩戴电极之间的正常身体阻抗;而当受试者进行食物摄入活动时,新形成的并联电路将通过手、嘴、餐具和食物形成,从而导致阻抗变化。为了在现实生活环境中对iEat进行定量评估,在日常餐桌用餐环境中进行了一项食物摄入实验,包括十名志愿者进行的40次用餐。借助一个轻量级、与用户无关的神经网络模型,iEat能够以86.4%的宏F1分数检测四种与食物摄入相关的活动,并以64.2%的宏F1分数对七种食物类型进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a28/11294556/87bcc55d75af/41598_2024_67765_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验