Suppr超能文献

腕部生物阻抗传感器阵列的无袖带血压监测:概念验证。

Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept.

出版信息

IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1723-1735. doi: 10.1109/TBCAS.2019.2946661. Epub 2019 Oct 10.

Abstract

Continuous and beat-to-beat monitoring of blood pressure (BP), compared to office-based BP measurement, provides significant advantages in predicting future cardiovascular disease. Traditional BP measurement methods are based on a cuff, which is bulky, obtrusive and not applicable to continuous monitoring. Measurement of pulse transit time (PTT) is one of the prominent cuffless methods for continuous BP monitoring. PTT is the time taken by the pressure pulse to travel between two points in an arterial vessel, which is correlated with the BP. In this paper, we present a new cuffless BP method using an array of wrist-worn bio-impedance sensors placed on the radial and the ulnar arteries of the wrist to monitor the arterial pressure pulse from the blood volume changes at each sensor site. BP is accurately estimated by using AdaBoost regression model based on selected arterial pressure pulse features such as transit time, amplitude and slope of the pressure pulse, which are dependent on the cardiac activity and the vascular properties of the wrist arteries. A separate model is developed for each subject based on calibration data to capture the individual variations of BP parameters. In this pilot study, data was collected from 10 healthy participants with age ranges from 18 to 30 years after exercising using our custom low-noise bio-impedance sensing hardware. Post-exercise BP was accurately estimated with an average correlation coefficient and root mean square error (RMSE) of 0.77 and 2.6 mmHg for the diastolic BP and 0.86 and 3.4 mmHg for the systolic BP.

摘要

与基于诊室的血压测量相比,连续和实时的血压监测在预测未来心血管疾病方面具有显著优势。传统的血压测量方法基于袖带,这种方法体积大、干扰性强,不适用于连续监测。脉搏传导时间(PTT)测量是一种无袖带连续血压监测的突出方法。PTT 是指压力脉冲在动脉血管中的两个点之间传播所需的时间,它与血压相关。在本文中,我们提出了一种新的无袖带血压方法,该方法使用放置在手腕桡动脉和尺动脉上的腕部生物阻抗传感器阵列来监测动脉压力脉冲,从每个传感器位置的血液体积变化中监测动脉压力脉冲。通过使用基于选定的动脉压力脉冲特征(如传导时间、压力脉冲的幅度和斜率)的 AdaBoost 回归模型,准确估计血压,这些特征取决于心脏活动和手腕动脉的血管特性。为每个受试者开发了一个单独的模型,以捕获血压参数的个体变化。在这项初步研究中,使用我们定制的低噪声生物阻抗感应硬件,从 10 名年龄在 18 至 30 岁之间的健康参与者在运动后收集数据。运动后的血压估计准确,舒张压的平均相关系数和均方根误差(RMSE)为 0.77 和 2.6mmHg,收缩压的平均相关系数和 RMSE 为 0.86 和 3.4mmHg。

相似文献

引用本文的文献

4
Resonance sonomanometry for noninvasive, continuous monitoring of blood pressure.用于无创、连续监测血压的共振测压法。
PNAS Nexus. 2024 Jul 30;3(7):pgae252. doi: 10.1093/pnasnexus/pgae252. eCollection 2024 Jul.
10

本文引用的文献

3
Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement.多传感器融合方法在无袖带血压测量中的应用。
IEEE J Biomed Health Inform. 2020 Jan;24(1):79-91. doi: 10.1109/JBHI.2019.2901724. Epub 2019 Mar 15.
10
A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.基于数据挖掘技术的新型连续血压估计方法。
IEEE J Biomed Health Inform. 2017 Nov;21(6):1730-1740. doi: 10.1109/JBHI.2017.2691715. Epub 2017 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验