Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, 13013, Marseille, France.
MED-EL France, 75012, Paris, France.
J Assoc Res Otolaryngol. 2024 Oct;25(5):491-506. doi: 10.1007/s10162-024-00952-3. Epub 2024 Aug 1.
Although a broadband acoustic click is physically the shortest duration sound we can hear, its peripheral neural representation is not as short because of cochlear filtering. The traveling wave imposes frequency-dependent delays to the sound waveform so that in response to a click, apical nerve fibers, coding for low frequencies, are excited several milliseconds after basal fibers, coding for high frequencies. Nevertheless, a click sounds like a click and these across-fiber delays are not perceived. This suggests that they may be compensated by the central auditory system, rendering our perception consistent with the external world. This explanation is difficult to evaluate in normal-hearing listeners because the contributions of peripheral and central auditory processing cannot easily be disentangled. Here, we test this hypothesis in cochlear implant listeners for whom cochlear mechanics is bypassed.
Eight cochlear implant users ranked in perceived duration 12 electrical chirps of various physical durations and spanning the cochlea in the apex-to-base or base-to-apex direction (Exp. 1). Late-latency cortical potentials were also recorded in response to a subset of these chirps (Exp. 2).
We show that an electrical chirp spanning the cochlea from base-to-apex is perceived as shorter than the same chirp spanning the cochlea in the opposite direction despite having the same physical duration. Cortical potentials also provide neural correlates of this asymmetry in perception.
These results demonstrate that the central auditory system processes frequency sweeps differently depending on the direction of the frequency change and that this processing difference is not simply the result of peripheral filtering.
尽管宽带声咔嗒声在物理上是我们能听到的最短持续时间的声音,但由于耳蜗滤波,其周围神经表示并不那么短。行波对声音波形施加频率相关的延迟,因此,对咔嗒声的响应,编码低频的顶神经纤维在编码高频的基底纤维之后几毫秒被激发。然而,咔嗒声听起来像咔嗒声,这些跨纤维延迟并未被感知。这表明它们可能被中枢听觉系统补偿,从而使我们的感知与外部世界一致。这个解释在正常听力的听众中很难评估,因为外周和中枢听觉处理的贡献不容易分开。在这里,我们在绕过耳蜗机制的人工耳蜗使用者中测试了这个假设。
八位人工耳蜗使用者对 12 个具有不同物理持续时间的电啁啾声的感知持续时间进行了排名,这些啁啾声跨越了从顶点到底部或从底部到顶点的耳蜗(实验 1)。还记录了这些啁啾声的一部分的迟发性皮质电位(实验 2)。
我们表明,尽管具有相同的物理持续时间,但从底部到顶部跨越耳蜗的电啁啾声被感知为比相反方向跨越耳蜗的相同啁啾声更短。皮质电位也为这种感知的不对称性提供了神经相关性。
这些结果表明,中枢听觉系统根据频率变化的方向以不同的方式处理频率扫描,并且这种处理差异不仅仅是外围滤波的结果。